Carbon Capturing Technology: A Step for Sustainable Future

Authors

  • Waseem Sajjad School of Mechanical and Manufacturing Engineering, National University of Science & Technology, Islamabad, Pakistan

DOI:

https://doi.org/10.53992/njns.v6i1.69

Keywords:

Carbon Capturing Technology, CO2, Climate change

Abstract

Humans have liberated more than two thousand gigatons of carbon dioxide into atmosphere, since the Industrial revolt took place. (A gigaton is a billion metric tons.) There is a sturdy cover of air around our planet. This thick air-tight blanket captures the heat of the earth we find today. CO2 is the main greenhouse gas which controls the temperature of atmosphere. Since 1880, due to increasing carbon percentage in atmosphere Earth temperature is increased by 2° Fahrenheit. If we don’t change anything, the effects of climate change as forest fires, the stifling heat waves, and sea level rise will continue to become severe. Here's the big, important thing about CO2: this is a greenhouse gas. That means CO2 in the atmosphere works to trap heat near Earth. It helps the Earth to hold on to some of the energy it receives from the Sun so that all the energy that comes from it does not return to space. If it were not for the effects of global warming, the oceans would be extremely solid. Earth would not be as beautiful a planet blue and green as life. Therefore, CO2 and other greenhouse gases are good to a certain level. An increase in CO2 concentration can help plants to grow faster. But CO2 is so good at trapping heat from the Sun, that even a small increase in CO2 in the atmosphere could cause the Earth to warm up even more. Currently, we’re using some techniques as Bio-energy with Carbon Capture and Storage (BECCS), Direct Air Capture, Carbon Mineralization, and Ocean-based Concepts. But these are not very cost-effective. For instance, direct air capture costs about $94- $232 per metric ton. It’s not very productive, some researchers have found a way to convert CO2 into useful fuel. The purified carbon could also be used to make methanol, carbon nanofibers, or diesel fuel. But again, fuel formed this way is expensive than naturally available resources. It can cost around $94 and $232 per metric ton. Here is the possible solution to minimize this cost in our report. So, that we may get a sustainable environment for future generations at the least possible cost.

Downloads

Published

2021-10-31

How to Cite

Sajjad, W. (2021). Carbon Capturing Technology: A Step for Sustainable Future. NUST Journal of Natural Sciences, 6(1). https://doi.org/10.53992/njns.v6i1.69