Withania somnifera as a potential nanomedicine: A review

Authors

  • Anam Amin Shami Department of Biotechnology, University of Central Punjab
  • Emmania Abid Department of Biotechnology, University of Central Punjab
  • Laiba Tanveer Department of Biotechnology, University of Central Punjab

DOI:

https://doi.org/10.53992/njns.v9i4.231

Keywords:

Withania somnifera, Ashwaganda, Green synthesis, Flavonoids, Withanolids, Alkaloids

Abstract

Withania somnifera, commonly known as Ashwaganda, is an important medicinal plant for a long time. Roots, seeds and other parts of Ashwaganda have clinically important pharmacological properties. The phytochemicals present in the plant include flavonoids, alkaloids, phenols and withanolids which make it useful in treatment of cancer, cardiovascular diseases and diabetes. Withania somnifera possess anti-inflammatory, anticancer, antioxidant, antimicrobial and anti-aging activities. Nanobiotechnology is an emerging field as nanoparticles allow targeted and controlled drug delivery. Green synthesis of nanoparticles involves the use of plants for their ability to reduce harmful impacts associated with chemically synthesized nanoparticles. The green synthesis approach has been applied for the synthesis of nanoparticles form plant extracts obtained from Withania somnifera. Silver, gold, selenium, platinum and many more nanoparticles have been synthesized by mixing the root extracts of Ashwaganda and metal salts. Another approach involves the use of plant extracts encapsulated in niosomes and in combination with solid lipid nanoparticles which is pharmacologically helpful. The nanoparticles from Withania somnifera utilize anti-inflammatory, anticancer, antioxidant, antimicrobial and anti-aging activities of Ashwaganda and help in targeted delivery of the drug. The plant-based nanoparticles show better characteristics including bioavailability, solubility and improved shelf life. This approach can be developed further for agricultural and technological uses like sensors and imaging technology.

References

Paul S, Chakraborty S, Anand U, Dey S, Nandy S, Ghorai M, Saha SC, Patil MT, Kandimalla R, Proćków J, Dey A. Withania somnifera (L.) Dunal (Ashwagandha): A comprehensive review on ethnopharmacology, pharmacotherapeutics, biomedicinal and toxicological aspects. Biomedicine Pharmacotherapy. 2021; 143:112-175. DOI: https://doi.org/10.1016/j.biopha.2021.112175

Dinesh P, Rasool M. Herbal formulations and their bioactive components as dietary supplements for treating rheumatoid arthritis. InBioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases 2019 Jan 1 (pp. 385-399). Academic Press. Management of Alzheimer’s Disease: Recent Trends and Future Perspectives,” Molecules. 2021;26(12): 3696. DOI: https://doi.org/10.1016/B978-0-12-813820-5.00022-2

Shaheen HM, Alsenosy AA. Nuclear Factor Kappa B Inhibition as a Therapeutic Target of Nutraceuticals in Arthritis, Osteoarthritis, and Related Inflammation. InBioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases 2019 Jan 1;437-453. Academic Press. DOI: https://doi.org/10.1016/B978-0-12-813820-5.00025-8

Alanazi HH, Elfaki E. The immunomodulatory role of Withania somnifera (L.) dunal in inflammatory diseases. Frontiers in pharmacology. 2023 Feb 22; 14:1084757. DOI: https://doi.org/10.3389/fphar.2023.1084757

Mikulska P, Malinowska M, Ignacyk M, Szustowski P, Nowak J, Pesta K, Szeląg M, Szklanny D, Judasz E, Kaczmarek G, Ejiohuo OP. Ashwagandha (Withania somnifera)—Current research on health-promoting activities: a narrative review. Pharmaceutics. 2023;15(4):1057. DOI: https://doi.org/10.3390/pharmaceutics15041057

Kashyap VK, Peasah-Darkwah G, Dhasmana A, Jaggi M, Yallapu MM, Chauhan SC. Withania somnifera: progress towards a pharmaceutical agent for immunomodulation and cancer therapeutics. Pharmaceutics. 2022 Mar 10;14(3):611. DOI: https://doi.org/10.3390/pharmaceutics14030611

Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arabian journal of and 2019 Nov 1;12(7):908-931. DOI: https://doi.org/10.1016/j.arabjc.2017.05.011

Yagublu V, Karimova A, Hajibabazadeh J, Reissfelder C, Muradov M, Bellucci S, Allahverdiyev A. Overview of physicochemical properties of nanoparticles as drug carriers for targeted cancer therapy. Journal of Functional Biomaterials. 2022 Oct 20;13(4):196. DOI: https://doi.org/10.3390/jfb13040196

Das R, Rauf A, Akhter S, Islam MN, Emran TB, Mitra S, Khan IN, Mubarak MS. Role of withaferin A and its derivatives in the management of Alzheimer’s disease: Recent trends and future perspectives. Molecules. 2021 Jun 17;26(12):3696.

Cheah KL, Norhayati MN, Yaacob LH, Rahman RA. Effect of Ashwagandha (Withania somnifera) extract on sleep: A systematic review and meta-analysis. PloS one. 2021;16(9): e0257843. DOI: https://doi.org/10.1371/journal.pone.0257843

Gaurav H, Yadav D, Maurya A, Yadav H, Yadav R, Shukla AC, Sharma M, Gupta VK, Palazon J. Biodiversity, biochemical profiling, and pharmaco-commercial applications of Withania somnifera: A review. Molecules. 2023 Jan 26;28(3):1208. DOI: https://doi.org/10.3390/molecules28031208

Habeeb Rahuman HB, Dhandapani R, Narayanan S, Palanivel V, Paramasivam R, Subbarayalu R, Thangavelu S, Muthupandian S. Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET nanobiotechnology. 2022 ;16(4):115-144. DOI: https://doi.org/10.1049/nbt2.12078

Priyanka G, Anil Kumar B, Lakshman M, Manvitha V, Kala Kumar B. Adaptogenic and immunomodulatory activity of Ashwagandha root extract: An experimental study in an equine model. Frontiers in veterinary science. 2020 Sep 29; 7:541112. DOI: https://doi.org/10.3389/fvets.2020.541112

Bhat JA, Akther T, Najar RA, Rasool F, Hamid A. Withania somnifera (L.) Dunal (Ashwagandha); current understanding and future prospect as a potential drug candidate. Frontiers in Pharmacology. 2022; 13:1029123. DOI: https://doi.org/10.3389/fphar.2022.1029123

Dutta R, Khalil R, Green R, Mohapatra SS, Mohapatra S. Withania somnifera (Ashwagandha) and withaferin A: Potential in integrative oncology. International journal of molecular sciences. 2019 Oct 25;20(21):5310. DOI: https://doi.org/10.3390/ijms20215310

Dar NJ, Hamid A, Ahmad M.

Pharmacologic overview of Withania somnifera, the Indian Ginseng. Cellular and molecular life sciences. 2015 Dec; 72:4445-4460. N. DOI: https://doi.org/10.1007/s00018-015-2012-1

Hosseini N, Moharari F, Soltanifar A. Evaluation of the effectiveness of Withania somnifera root extract on the anxiety symptoms among children with ADHD in Mashhad. Pak J Med Health Sci. 2019;13(1):210-216.

Kany S, Vollrath JT, Relja B. Cytokines in inflammatory disease. International journal of molecular sciences. 2019 Nov 28;20(23):6008. DOI: https://doi.org/10.3390/ijms20236008

Andallu B, Radhika B. Hypoglycemic, diuretic and hypocholesterolemic effect of winter cherry. Withania somnifera. 2000:607-609.

Bashir A, Nabi M, Tabassum N, Afzal S, Ayoub M. An updated review on phytochemistry and molecular targets of Withania somnifera (L.) Dunal (Ashwagandha). Frontiers in Pharmacology. 2023; 14:1049334. DOI: https://doi.org/10.3389/fphar.2023.1049334

Khan MA, Ahmed RS, Chandra N, Arora VK, Ali A. In vivo, extract from Withania somnifera root ameliorates arthritis via regulation of key immune mediators of inflammation in experimental model of arthritis. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Inflammatory and Anti-Allergy Agents). 2019 Feb 4;18(1):55-70. DOI: https://doi.org/10.2174/1871523017666181116092934

Polumackanycz M, Petropoulos SA, Śledziński T, Goyke E, Konopacka A, Plenis A, Viapiana A. Withania somnifera L.: phenolic compounds composition and biological activity of commercial samples and their aqueous and hydromethanolic extracts. Antioxidants. 2023 Feb 22;12(3):550. DOI: https://doi.org/10.3390/antiox12030550

Kopustinskiene DM, Jakstas V, Savickas A, Bernatoniene J. Flavonoids as anticancer agents. Nutrients. 2020 Feb 12;12(2):457. DOI: https://doi.org/10.3390/nu12020457

Banik B, Das S, Das MK. Medicinal Plants with Potent Anti-inflammatory and Anti-arthritic Properties found in Eastern Parts of the Himalaya: An Ethnomedicinal Review. Pharmacognosy Reviews. 2020;14(28). DOI: https://doi.org/10.5530/phrev.2020.14.16

Mizwicki MT, Norman AW. Vitamin D Sterol/Vitamin D Receptor Conformational Dynamics and Nongenomic Actions. Vitamin D. 2018 Jan 1:269-292. DOI: https://doi.org/10.1016/B978-0-12-809965-0.00016-1

Meitha K, Pramesti Y, Suhandono S. Reactive oxygen species and antioxidants in postharvest vegetables and fruits. International journal of food science. 2020;2020(1):8817778. DOI: https://doi.org/10.1155/2020/8817778

El Jemli M, Kamal R, Marmouzi I, Zerrouki A, Cherrah Y, Alaoui K. Radical‐scavenging activity and ferric reducing ability of Juniperus thurifera (L.), J. oxycedrus (L.), J. phoenicea (L.) and Tetraclinis articulata (L.). Advances in Pharmacological and Pharmaceutical Sciences. 2016;2016(1):6392656. DOI: https://doi.org/10.1155/2016/6392656

Pandey V, Ansari WA, Misra P, Atri N. Withania somnifera: Advances and implementation of molecular and tissue culture techniques to enhance its application. Frontiers in Plant Science. 2017 Aug 9; 8:1390. DOI: https://doi.org/10.3389/fpls.2017.01390

Saleem S, Muhammad G, Hussain MA, Altaf M, Bukhari SN. Withania somnifera L.: Insights into the phytochemical profile, therapeutic potential, clinical trials, and future prospective. Iranian journal of basic medical sciences. 2020;23(12):1501.

Speers AB, Cabey KA, Soumyanath A, Wright KM. Effects of Withania somnifera (Ashwagandha) on stress and the stress-related neuropsychiatric disorders anxiety, depression, and insomnia. Current neuropharmacology. 2021 Sep 9;19(9):1468. DOI: https://doi.org/10.2174/1570159X19666210712151556

Panossian A. Understanding adaptogenic activity: specificity of the pharmacological action of adaptogens and other phytochemicals. Annals of the New York Academy of Sciences. 2017 Aug;1401(1):49-64. DOI: https://doi.org/10.1111/nyas.13399

Panossian A, Seo EJ, Efferth T. Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. Phytomedicine. 2018 Nov 15; 50:257-284. DOI: https://doi.org/10.1016/j.phymed.2018.09.204

Durg S, Bavage S, Shivaram SB. Withania somnifera (Indian ginseng) in diabetes mellitus: a systematic review and meta‐analysis of scientific evidence from experimental research to clinical application. Phytotherapy research. 2020 May;34(5):1041-1059. DOI: https://doi.org/10.1002/ptr.6589

Sharifi-Rad J, Quispe C, Ayatollahi SA, Kobarfard F, Staniak M, Stępień A, Czopek K, Sen S, Acharya K, Matthews KR, Sener B. Chemical Composition, Biological Activity, and Health‐Promoting Effects of Withania somnifera for Pharma‐Food Industry Applications. Journal of Food Quality. 2021;2021(1):8985179. DOI: https://doi.org/10.1155/2021/8985179

Iuvone T, Esposito G, Capasso F, Izzo AA. Induction of nitric oxide synthase expression by Withania somnifera in macrophages. Life sciences. 2003 Feb 21;72(14):1617-1625. DOI: https://doi.org/10.1016/S0024-3205(02)02472-4

Tharakan A, Shukla H, Benny IR, Tharakan M, George L, Koshy S. Immunomodulatory effect of Withania somnifera (Ashwagandha) extract—a randomized, double-blind, placebo-controlled trial with an open label extension on healthy participants. Journal of clinical medicine. 2021 Aug 18;10(16):3644. DOI: https://doi.org/10.3390/jcm10163644

Di Sotto A, Vitalone A, Di Giacomo S.Plant-derived nutraceuticals and immune system modulation: an evidence-based overview. Vaccines. 2020 Aug 22;8(3):468. DOI: https://doi.org/10.3390/vaccines8030468

Dhama P, Ding X, Sharma A. Exploring phytochemicals of Withania somnifera from different vicinity for functional foods. Journal of Future Foods. 2023 Sep 1;3(3):278-287. DOI: https://doi.org/10.1016/j.jfutfo.2023.02.010

Munir N, Mahmood Z, Shahid M, Afzal MN, Jahangir M, Ali Shah SM, Tahir IM, Riaz M, Hussain S, Akram M, Yousaf F. Withania somnifera chemical constituents’ in vitro antioxidant potential and their response on spermatozoa parameters. Dose-Response. 2022 Feb 5;20(1): 15593258221074936. DOI: https://doi.org/10.1177/15593258221074936

Roy A, Khan A, Ahmad I, Alghamdi S, Rajab BS, Babalghith AO, Alshahrani MY, Islam S, Islam MR. Flavonoids a bioactive compound from medicinal plants and its therapeutic applications. BioMed Research International. 2022;2022(1):5445291. DOI: https://doi.org/10.1155/2022/5445291

Ramli S, Wu YS, Batumalaie K, Guad RM, Choy KW, Kumar A, Gopinath SC, Rahman Sarker MM, Subramaniyan V, Sekar M, Fuloria NK. Phytochemicals of Withania somnifera as a future promising drug against SARS-CoV-2: pharmacological role, molecular mechanism, molecular docking evaluation, and efficient delivery. Microorganisms. 2023 Apr 12;11(4):1000. DOI: https://doi.org/10.3390/microorganisms11041000

Singh A, Kumar S, Gupta VK, Singh S, Dwivedi VD, Mina U. Computational assessment of Withania somnifera phytomolecules as putative inhibitors of Mycobacterium tuberculosis CTP synthase PyrG. Journal of Biomolecular Structure and Dynamics. 2023 Jul 24;41(11):4903-4916.

Nile SH, Nile A, Gansukh E, Baskar V, Kai G. Subcritical water extraction of withanosides and withanolides from ashwagandha (Withania somnifera L) and their biological activities. Food and Chemical Toxicology. 2019 Oct 1; 132:110659. DOI: https://doi.org/10.1016/j.fct.2019.110659

Tomar V, Beuerle T, Sircar D. A validated HPTLC method for the simultaneous quantifications of three phenolic acids and three withanolides from Withania somnifera plants and its herbal products. Journal of Chromatography B. 2019 Aug 15; 1124:154-160. DOI: https://doi.org/10.1016/j.jchromb.2019.06.009

Kumar S, Mathew SO, Aharwal RP, Tulli HS, Mohan CD, Sethi G, Ahn KS, Webber K, Sandhu SS, Bishayee A. Withaferin A: A pleiotropic anticancer agent from the Indian medicinal plant Withania somnifera (L.) Dunal. Pharmaceuticals. 2023 Jan 22;16(2):160. DOI: https://doi.org/10.3390/ph16020160

Chaves T, Fazekas CL, Horváth K, Correia P, Szabó A, Török B, Bánrévi K, Zelena D. Stress adaptation and the brainstem with focus on corticotropin-releasing hormone. International journal of molecular sciences. 2021 Aug 23;22(16):9090. DOI: https://doi.org/10.3390/ijms22169090

Lacombe J, Cretignier T, Meli L, Wijeratne EK, Veuthey JL, Cuendet M, Gunatilaka AL, Zenhausern F. Withanolide D enhances radiosensitivity of human cancer cells by inhibiting DNA damage non-homologous end joining repair pathway. Frontiers in oncology. 2020 Jan 8; 9:1468. DOI: https://doi.org/10.3389/fonc.2019.01468

EL-Hefny M, Salem MZ, Behiry SI, Ali HM. The potential antibacterial and antifungal activities of wood treated with Withania somnifera fruit extract, and the phenolic, caffeine, and flavonoid composition of the extract according to HPLC. Processes. 2020 Jan 16;8(1):113. DOI: https://doi.org/10.3390/pr8010113

K. J. J. D. J. W. S. L.R. et al., “Original contributions Antioxidant and Phytochemical composition of Leaves, Stem and Root Extracts of Withania coagulans and Withania somnifera,” J. Med. Spice Plants.2021; 647(1): 1-29.

Wongtrakul J, Thongtan T, Kumrapich B, Saisawang C, Ketterman AJ. Neuroprotective effects of Withania somnifera in the SH-SY5Y Parkinson cell model. Heliyon. 2021 Oct 1;7(10). DOI: https://doi.org/10.1016/j.heliyon.2021.e08172

Limanaqi F, Biagioni F, Busceti CL, Ryskalin L, Polzella M, Frati A, Fornai F. Phytochemicals bridging autophagy induction and alpha-synuclein degradation in parkinsonism. International journal of molecular sciences. 2019 Jul 3;20(13):3274. DOI: https://doi.org/10.3390/ijms20133274

Silva IV, de Figueiredo RC, Rios DR. Effect of different classes of antihypertensive drugs on endothelial function and inflammation. International journal of molecular sciences. 2019 Jul 14;20(14):3458. DOI: https://doi.org/10.3390/ijms20143458

K. S. Teja, G. T. Sivaram, K. M. Yuvaraj, and L. Kadiri, “Effect of different dates of sowing, organic manures on protein , fiber and alkaloid content in leaves and roots of ashwagandha ( Withania somnifera ),” 2002;11(9), 522–524.

Hatami M, Mortazavi M, Baseri Z, Khani B, Rahimi M, Babaei S. Antioxidant compounds in the treatment of Alzheimer’s disease: Natural, hybrid, and synthetic products. Evidence‐Based Complementary and Alternative Medicine. 2023;2023(1):8056462. DOI: https://doi.org/10.1155/2023/8056462

Nasrollahzadeh M, Sajadi SM, Sajjadi M, Issaabadi Z. An introduction to nanotechnology. InInterface science and technology 2019 Jan 1; 28: 1-27. DOI: https://doi.org/10.1016/B978-0-12-813586-0.00001-8

Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. Journal of Nanobiotechnology. 2022 Jun 7;20(1):262. DOI: https://doi.org/10.1186/s12951-022-01477-8

Hussain I, Singh NB, Singh A, Singh H, Singh SC. Green synthesis of nanoparticles and its potential application. Biotechnology letters. 2016 Apr; 38:545-560. DOI: https://doi.org/10.1007/s10529-015-2026-7

Jeevanandam J, Kiew SF, Boakye-Ansah S, Lau SY, Barhoum A, Danquah MK, Rodrigues J. Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. Nanoscale. 2022;14(7):2534-2571. DOI: https://doi.org/10.1039/D1NR08144F

Vijayaram S, Razafindralambo H, Sun YZ, Vasantharaj S, Ghafarifarsani H, Hoseinifar SH, Raeeszadeh M. Applications of green synthesized metal nanoparticles—a review. Biological Trace Element Research. 2024 Jan;202(1):360-386. DOI: https://doi.org/10.1007/s12011-023-03645-9

Adeyemi JO, Oriola AO, Onwudiwe DC, Oyedeji AO. Plant extracts mediated metal-based nanoparticles: synthesis and biological applications. Biomolecules. 2022 Apr 24;12(5):627. DOI: https://doi.org/10.3390/biom12050627

Nguyen NT, Nguyen LM, Nguyen TT, Nguyen TT, Nguyen DT, Tran TV. Formation, antimicrobial activity, and biomedical performance of plant-based nanoparticles: a review. Environmental Chemistry Letters. 2022 Aug;20(4):2531-2571. DOI: https://doi.org/10.1007/s10311-022-01425-w

Abarca-Cabrera L, Fraga-García P, Berensmeier S. Bio-nano interactions: binding proteins, polysaccharides, lipids and nucleic acids onto magnetic nanoparticles. Biomaterials research. 2021 Apr 21;25(1):12. DOI: https://doi.org/10.1186/s40824-021-00212-y

Vladilo G, Hassanali A. Hydrogen bonds and life in the universe. Life. 2018 Jan 3;8(1):1. DOI: https://doi.org/10.3390/life8010001

Zhou HX, Pang X. Electrostatic interactions in protein structure, folding, binding, and condensation. Chemical reviews. 2018 Feb 28;118(4):1691-1741. DOI: https://doi.org/10.1021/acs.chemrev.7b00305

Mourdikoudis S, Pallares RM, Thanh NT. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale. 2018;10(27):12871-12934. DOI: https://doi.org/10.1039/C8NR02278J

Malatesta M. Transmission electron microscopy as a powerful tool to investigate the interaction of nanoparticles with subcellular structures. International Journal of Molecular Sciences. 2021 Nov 26;22(23):12789. DOI: https://doi.org/10.3390/ijms222312789

Upadhyay S, Parekh K, Pandey B. Influence of crystallite size on the magnetic properties of Fe3O4 nanoparticles. Journal of Alloys and Compounds. 2016 Sep 5; 678:478-485. DOI: https://doi.org/10.1016/j.jallcom.2016.03.279

Li W, Zamani R, Rivera Gil P, Pelaz B, Ibáñez M, Cadavid D, Shavel A, Alvarez-Puebla RA, Parak WJ, Arbiol J, Cabot A. CuTe nanocrystals: shape and size control, plasmonic properties, and use as SERS probes and photothermal agents. Journal of the American Chemical Society. 2013 May 15;135(19):7098-7101. DOI: https://doi.org/10.1021/ja401428e

Kim BH, Heo J, Park J. Determination of the 3D atomic structures of nanoparticles. Small Science. 2021 Jan;1(1):2000045. DOI: https://doi.org/10.1002/smsc.202000045

Nikolić V, Ilić-Stojanović S, Petrović S, Tačić A, Nikolić L. Administration routes for nano drugs and characterization of nano drug loading. InCharacterization and biology of nanomaterials for drug delivery 2019 Jan 1: 587-625. DOI: https://doi.org/10.1016/B978-0-12-814031-4.00021-0

Faghihzadeh F, Anaya NM, Schifman LA, Oyanedel-Craver V. Fourier transform infrared spectroscopy to assess molecular-level changes in microorganisms exposed to nanoparticles. Nanotechnology for Environmental Engineering. 2016 Dec; 1:1-16. DOI: https://doi.org/10.1007/s41204-016-0001-8

Alagesan V, Venugopal S. Green synthesis of selenium nanoparticle using leaves extract of Withania somnifera and its biological applications and photocatalytic activities. Bionanoscience. 2019 Mar 15; 9:105-116. DOI: https://doi.org/10.1007/s12668-018-0566-8

Prasad KS, Prasad SK, Veerapur R, Lamraoui G, Prasad A, Prasad MN, Singh SK, Marraiki N, Syed A, Shivamallu C. Antitumor potential of green synthesized ZnONPs using root extract of Withania somnifera against human breast cancer cell line. Separations. 2021 Jan 18;8(1):8. DOI: https://doi.org/10.3390/separations8010008

S. Dhabian and R. Jasim, “Anticancer and Antioxidant Activity of the Greenly Synthesized Zinc Nanoparticles Composites using Aqueous Extract of Withania somnifera plant,” Egypt. J. Chem., pp. 0–0, May 2021, doi: 10.21608/ejchem.2021.75114.3686. DOI: https://doi.org/10.21608/ejchem.2021.75114.3686

Malaikozhundan B, Vinodhini J, Kalanjiam MA, Vinotha V, Palanisamy S, Vijayakumar S, Vaseeharan B, Mariyappan A. High synergistic antibacterial, antibiofilm, antidiabetic and antimetabolic activity of Withania somnifera leaf extract-assisted zinc oxide nanoparticle. Bioprocess and biosystems engineering. 2020 Sep; 43:1533-1547. DOI: https://doi.org/10.1007/s00449-020-02346-0

Kapoor S, Sood H, Saxena S, Chaurasia

OP. Green synthesis of silver nanoparticles using Rhodiola imbricata and Withania somnifera root extract and their potential catalytic, antioxidant, cytotoxic and growth-promoting activities. Bioprocess and Biosystems Engineering. 2022:1-6.

Jagadheeswari R, Lakshmi T, Balusamy S, David S, Raghunandha S. Biosynthesis of silver nanoparticles using Withania somnifera L. Dunal extract and its antibacterial activity against food pathogens. Ann. Phytomed. 2020;9(1):195-198. DOI: https://doi.org/10.21276/ap.2020.9.1.25

Gaurav I, Singh T, Thakur A, Kumar G, Rathee P, Kumari P, Sweta K. Synthesis, in-vitro and in-silico evaluation of silver nanoparticles with root extract of Withania somnifera for antibacterial activity via binding of penicillin-binding protein-4. Current Pharmaceutical Biotechnology. 2020 Dec 1;21(15):1674-1687. DOI: https://doi.org/10.2174/1389201021666200702152000

Abul Qais F, Samreen, Ahmad I. Broad-spectrum inhibitory effect of green synthesised silver nanoparticles from Withania somnifera (L.) on microbial growth, biofilm and respiration: a putative mechanistic approach. Iet Nanobiotechnology. 2018 Apr;12(3):325-335. DOI: https://doi.org/10.1049/iet-nbt.2017.0193

Meher K, Paithankar H, Hosur RV, Lopus M. Ashwagandha-polyphenols-functionalized gold nanoparticles facilitate apoptosis by perturbing microtubule assembly dynamics in breast cancer cells. Journal of Drug Delivery Science and Technology. 2022 Apr 1; 70:103225. DOI: https://doi.org/10.1016/j.jddst.2022.103225

Al-Shabib NA, Husain FM, Qais FA, Ahmad N, Khan A, Alyousef AA, Arshad M, Noor S, Khan JM, Alam P, Albalawi TH. Phyto-mediated synthesis of porous titanium dioxide nanoparticles from Withania somnifera root extract: broad-spectrum attenuation of biofilm and cytotoxic properties against HepG2 cell lines. Frontiers in Microbiology. 2020 Jul 28; 11:1680. DOI: https://doi.org/10.3389/fmicb.2020.01680

Singh OS, Pant NC, Laishram L, Tewari M, Dhoundiyal R, Joshi K, Pandey CS. Effect of CuO nanoparticles on polyphenols content and antioxidant activity in Ashwagandha (Withania somnifera L. Dunal). Journal of Pharmacognosy and Phytochemistry. 2018;7(2):3433-3439.

Shanmugapriya J, Reshma CA, Srinidhi V, Harithpriya K, Ramkumar KM, Umpathy D, Gunasekaran K, Subashini R. Green synthesis of copper nanoparticles using Withania somnifera and its antioxidant and antibacterial activity. Journal of Nanomaterials. 2022;2022(1):7967294. DOI: https://doi.org/10.1155/2022/7967294

Chinembiri TN, Gerber M, Du Plessis LH, Du Preez JL, Hamman JH, Du Plessis J. Topical delivery of Withania somnifera crude extracts in niosomes and solid lipid nanoparticles. Pharmacognosy magazine. 2017 Oct;13: S663. DOI: https://doi.org/10.4103/pm.pm_489_16

Nair A, Kuppusamy K, Nangan S, Natesan T, Haponiuk JT, Thomas S, Ramasubburayan R, Gnanasekaran L, Selvaraj M, Gopi S. Multifunctional natural derived carbon quantum dots from Withania somnifera (L.)–Antiviral activities against SARS-CoV-2 pseudoviron. Environmental Research. 2023 Dec 15; 239:117366. DOI: https://doi.org/10.1016/j.envres.2023.117366

Li Y, Zhang J, Gu J, Chen S. Biosynthesis of polyphenol-stabilised nanoparticles and assessment of anti-diabetic activity. Journal of Photochemistry and Photobiology B: Biology. 2017 Apr 1; 169:96-100. DOI: https://doi.org/10.1016/j.jphotobiol.2017.02.017

Daei S, Ziamajidi N, Abbasalipourkabir R, Aminzadeh Z, Vahabirad M. Silver nanoparticles exert apoptotic activity in bladder cancer 5637 cells through alteration of Bax/Bcl-2 genes expression. Chonnam Medical Journal. 2022 Sep;58(3):102. DOI: https://doi.org/10.4068/cmj.2022.58.3.102

Khan MS, Qais FA, Ahmad I. Indian berries and their active compounds: Therapeutic potential in cancer prevention. InNew Look to Phytomedicine 2019:179-201. DOI: https://doi.org/10.1016/B978-0-12-814619-4.00008-2

Maarouf RE, Azab KS, El Fatih NM, Helal H, Rashed L. Withania somnifera Alter BCL2/Bax signaling and trigger apoptosis of MCF-7 and MDA-MB231 breast cancer cells exposed to γ-radiation. Human & Experimental Toxicology. 2023 May 31; 42:09603271231180849. DOI: https://doi.org/10.1177/09603271231180849

Mohammed Ali IA, AL-Ahmed HI, Ben Ahmed A. Evaluation of green synthesis (Withania somnifera) of selenium nanoparticles to reduce sperm DNA fragmentation diabetic mice induced with streptozotocin. Applied Sciences. 2023 Jan 4;13(2):728. DOI: https://doi.org/10.3390/app13020728

Logie E, Vanden Berghe W. Tackling chronic inflammation with withanolide phytochemicals—A withaferin a perspective. Antioxidants. 2020 Nov 10;9(11):1107. DOI: https://doi.org/10.3390/antiox9111107

Suganya K, Kayalvizhi E, Yuvaraj R, Chandrasekar M, Kavitha U, Suresh KK. Effect of Withania somnifera on the antioxidant and neurotransmitter status in sleep deprivation induced Wistar rats. Bioinformation. 2020;16(8):631. DOI: https://doi.org/10.6026/97320630016631

Mehta SK, Gowder SJ. Members of antioxidant machinery and their functions. Basic principles and clinical significance of oxidative stress. 2015 Nov 11; 11:59-85. DOI: https://doi.org/10.5772/61884

Gómez Afonso A, Fernandez-Lazaro D, Adams DP, Monserda-Vilaro A, Fernandez-Lazaro CI. Effects of Withania somnifera (Ashwagandha) on hematological and biochemical markers, hormonal behavior, and oxidant response in healthy adults: A systematic review. Current Nutrition Reports. 2023 Sep;12(3):465-477. DOI: https://doi.org/10.1007/s13668-023-00481-0

Devi A, Dwibedi V, George N, Khan ZA. Response surface optimization for investigating antioxidant potential of Camellia Sinensis and Withania somnifera in synergistic manner. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. 2023 Jun;93(2):397-408. DOI: https://doi.org/10.1007/s40011-022-01423-6

Pizzino G, Irrera N, Cucinotta M, Pallio

G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A. Oxidative stress: harms and benefits for human health. Oxidative medicine and cellular longevity. 2017;2017(1):8416763. DOI: https://doi.org/10.1155/2017/8416763

Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticle‐induced oxidative stress and toxicity. BioMed research international. 2013;2013(1):942916. DOI: https://doi.org/10.1155/2013/942916

Narra K, Naik SK, Ghatge AS. A study of efficacy and safety of ashwagandha (Withania somnifera) lotion on facial skin in photoaged healthy adults. Cureus. 2023 Mar;15(3). DOI: https://doi.org/10.7759/cureus.36168

Sharma PK, Kumar L, Goswami Y, Pujani M, Dikshit M, Tandon R. The aqueous root extract of Withania somnifera ameliorates LPS-induced inflammatory changes in the in vitro cell-based and mice models of inflammation. Frontiers in Pharmacology. 2023 Jun 12; 14:1139654. DOI: https://doi.org/10.3389/fphar.2023.1139654

Pontes-Quero GM, Benito-Garzón L, Pérez Cano J, Aguilar MR, Vázquez-Lasa B. Modulation of inflammatory mediators by polymeric nanoparticles loaded with anti-inflammatory drugs. Pharmaceutics. 2021 Feb 23;13(2):290. DOI: https://doi.org/10.3390/pharmaceutics13020290

Brusini R, Varna M, Couvreur P. Advanced nanomedicines for the treatment of inflammatory diseases. Advanced drug delivery reviews. 2020 Jan 1; 157:161-178. DOI: https://doi.org/10.1016/j.addr.2020.07.010

Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal transduction and targeted therapy. 2017 Jul 14;2(1):1-9. DOI: https://doi.org/10.1038/sigtrans.2017.23

Martorana F, Guidotti G, Brambilla L, Rossi D. Withaferin A inhibits nuclear factor‐κB‐dependent pro‐inflammatory and stress response pathways in astrocytes. Neural plasticity. 2015;2015(1):381964. DOI: https://doi.org/10.1155/2015/381964

Wang X, Shen Y, Thakur K, Han J, Zhang JG, Hu F, Wei ZJ. Antibacterial activity and mechanism of ginger essential oil against Escherichia coli and Staphylococcus aureus. Molecules.

Aug 30;25(17):3955.

Das R, Afrin N. In vivo study of anti-diabetic activity and safety profile analysis of ethanolic extract of root of Withania somnifera on alloxan-induced diabetic rats. World Journal of Pharmaceutical Research. 2019 Oct 17;8.

Jafri AA, Aggarwal J, Batra J. Antidiabetic effect of Withania somnifera Root in STZ induced diabetic rats. Cardiometry. 2022 Dec 1(25):1278-1283. DOI: https://doi.org/10.18137/cardiometry.2022.25.12781283

Ashwini D, Mahalingam G. Green synthesized metal nanoparticles, characterization and its antidiabetic activities-a review. Research Journal of Pharmacy and Technology. 2020;13(1):468-474. DOI: https://doi.org/10.5958/0974-360X.2020.00091.8

Vaiserman A, Koliada A, Zayachkivska A, Lushchak O. Nanodelivery of natural antioxidants: an anti-aging perspective. Frontiers in bioengineering and biotechnology. 2020 Jan 10; 7:447. DOI: https://doi.org/10.3389/fbioe.2019.00447

Kiani BH, Haq IU, Alhodaib A, Basheer S, Fatima H, Naz I, Ur-Rehman T. Comparative evaluation of biomedical applications of zinc nanoparticles synthesized by using Withania somnifera Plant Extracts. Plants. 2022 Jun 7;11(12):1525. DOI: https://doi.org/10.3390/plants11121525

M. P. S. S, “A Comprehensive Review on Medicinal Herb Withania somnifera (L.) Dunal in Women’s Health: a Rejuvenator From Siddha Medicine,” Curr. Pharmacol. Reports. 2022; 8(1): 72-77. DOI: https://doi.org/10.1007/s40495-021-00274-5

Rana N, Singh SK, Banu NA, Hjazi A, Vamanu E, Singh MP. The ethnopharmacological properties of green-engineered metallic nanoparticles against metabolic disorders. Medicina. 2023 May 25;59(6):1022. DOI: https://doi.org/10.3390/medicina59061022

P. Maheswari, S. Harish, M. Navaneethan, C. Muthamizhchelvan, S. Ponnusamy, and Y. Hayakawa, “Bio-modified TiO2 nanoparticles with Withania somnifera, Eclipta prostrata and Glycyrrhiza glabra for anticancer and antibacterial applications,” Mater. Sci. Eng. C, vol. 108, p. 110457, Mar. 2020, doi: 10.1016/j.msec.2019.110457. DOI: https://doi.org/10.1016/j.msec.2019.110457

Haleem A, Javaid M, Singh RP, Rab S, Suman R. Applications of nanotechnology in medical field: a brief review. Global Health Journal. 2023 Jun 1;7(2):70-77. DOI: https://doi.org/10.1016/j.glohj.2023.02.008

Martínez-Ballesta M, Gil-Izquierdo Á, García-Viguera C, Domínguez-Perles R. Nanoparticles and controlled delivery for bioactive compounds: Outlining challenges for new “smart-foods” for health. Foods. 2018 May 7;7(5):72. DOI: https://doi.org/10.3390/foods7050072

Patra JK, Das G, Fraceto LF, Campos EV, Rodriguez-Torres MD, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S. Nano based drug delivery systems: recent developments and future prospects. Journal of nanobiotechnology. 2018 Dec; 16:1-33. DOI: https://doi.org/10.1186/s12951-018-0392-8

Koklesova L, Jakubikova J, Cholujova D, Samec M, Mazurakova A, Šudomová M, Pec M, Hassan ST, Biringer K, Büsselberg D, Hurtova T. Phytochemical-based nanodrugs going beyond the state-of-the-art in cancer management—Targeting cancer stem cells in the framework of predictive, preventive, personalized medicine. Frontiers in Pharmacology. 2023 Mar 23; 14:1121950. DOI: https://doi.org/10.3389/fphar.2023.1121950

Harish V, Tewari D, Gaur M, Yadav AB, Swaroop S, Bechelany M, Barhoum A. Review on nanoparticles and nanostructured materials: Bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-food applications. Nanomaterials. 2022 Jan 28;12(3):457. DOI: https://doi.org/10.3390/nano12030457

Selvakesavan RK, Franklin G. Prospective application of nanoparticles green synthesized using medicinal plant extracts as novel nanomedicines. Nanotechnology, science and applications. 2021 Sep DOI: https://doi.org/10.2147/NSA.S333467

:179-195.

Fuladi S, Emami SA, Mohammadpour AH, Karimani A, Manteghi AA, Sahebkar A. Assessment of the efficacy of Withania somnifera root extract in patients with generalized anxiety disorder: a randomized double-blind placebo-controlled trial. Current Reviews in Clinical and Experimental Pharmacology Formerly Current Clinical Pharmacology. 2021 May 1;16(2):191-196. DOI: https://doi.org/10.2174/1574884715666200413120413

Anand U, Carpena M, Kowalska-Góralska M, Garcia-Perez P, Sunita K, Bontempi E, Dey A, Prieto MA, Proćków J, Simal-Gandara J. Safer plant-based nanoparticles for combating antibiotic resistance in bacteria: A comprehensive review on its potential applications, recent advances, and future perspective. Science of The Total Environment. 2022 May 15; 821:153472. DOI: https://doi.org/10.1016/j.scitotenv.2022.153472

Dhaka A, Mali SC, Sharma S, Trivedi R. A review on biological synthesis of silver nanoparticles and their potential applications. Results in Chemistry. 2023 Sep 11:101108. DOI: https://doi.org/10.1016/j.rechem.2023.101108

Das R, Rauf A, Akhter S, Islam MN, Emran TB, Mitra S, Khan IN, Mubarak MS. Role of withaferin A and its derivatives in the management of

Alzheimer’s disease: Recent trends and future perspectives. Molecules. 2021 Jun 17;26(12):3696. DOI: https://doi.org/10.3390/molecules26123696

Azameti MK, Imoro AW. Nanotechnology: A promising field in enhancing abiotic stress tolerance in plants. Crop Design. 2023 Jun 28:100037. DOI: https://doi.org/10.1016/j.cropd.2023.100037

El-Saadony MT, Saad AM, Soliman SM, Salem HM, Desoky ES, Babalghith AO, El-Tahan AM, Ibrahim OM, Ebrahim AA, Abd El-Mageed TA, Elrys AS. Role of nanoparticles in enhancing crop tolerance to abiotic stress: A comprehensive review. Frontiers in plant science. 2022 Nov 2; 13:946717. DOI: https://doi.org/10.3389/fpls.2022.946717

Rajput VD, Minkina T, Upadhyay SK, Kumari A, Ranjan A, Mandzhieva S, Sushkova S, Singh RK, Verma KK. Nanotechnology in the restoration of polluted soil. Nanomaterials. 2022 Feb 24;12(5):769. DOI: https://doi.org/10.3390/nano12050769

Adnan M, Akbar A, Mussarat S, Murad W, Hameed I, Begum S, Nazir R, Ali N, Ali EA, Bari A, Aziz MA. [Retracted] Phyto‐Extract‐Mediated Synthesis of Silver Nanoparticles (AgNPs) and Their Biological Activities. BioMed Research International. 2022;2022(1):9845022. DOI: https://doi.org/10.1155/2022/9845022

Downloads

Published

2024-12-18

How to Cite

Anam Amin Shami, Emmania Abid, & Laiba Tanveer. (2024). Withania somnifera as a potential nanomedicine: A review. NUST Journal of Natural Sciences, 9(4). https://doi.org/10.53992/njns.v9i4.231