Potential role of phytochemicals in attenuating Alzheimer’s disease - A comprehensive review
DOI:
https://doi.org/10.53992/njns.v10i4.292Keywords:
Alzheimer’s Disease, Phytochemicals, Modern Pharmacotherapy, Flavonoids, Alkaloids, Quercetin, Gingko Biloba, Naringin, Apigenin, Antioxidants, Neuroprotective PropertiesAbstract
Modern pharmacotherapy encourages the use of phytochemicals for combating Alzheimer’s Disease. The clinical findings and recent developments in using flavonoids, alkaloids, glycosides, and terpenoids against Alzheimer’s have been summarized in this review. Quercetin contains flavonoids that inhibit BACE-1 enzyme activity that is responsible for the synthesis of Amyloid-B peptide. Quercetin also increases AMPK activity. Alkaloids inhibit AchE activity. Moreover, ginkgo biloba produces antioxidant effects by scavenging free peroxyl radicals. Phenylethanoid glycoside exerts neuroprotective properties by improving the impairment of neuronal apoptosis. All these claims have been supported through in-vitro and in-vivo studies. Furthermore, employing these therapies will only be feasible through delivery through a nanoparticle delivery system. Phytochemicals possess great potential for Alzheimer’s Disease treatment. They contain antioxidants, anti-inflammatory, and certain neuroprotective constituents which make them ideal for Alzheimer’s therapy. The delivery of these agents can be done through nanocomposites to make sure they bypass the blood-brain barrier to elicit a therapeutic response.
References
Kim Y, Lim J, Oh J. Taming neuroinflammation in Alzheimer’s disease: The protective role of phytochemicals through the gut−brain axis. Biomedicine & Pharmacotherapy. 2024 Sep;178: 117277.
Catindig JAS, Venketasubramanian N, Ikram MK, Chen C. Epidemiology of dementia in Asia: Insights on prevalence, trends and novel risk factors. J Neurol Sci. 2012 Oct;321(1-2):11-16.
Qiu C, Kivipelto M, Von Strauss E. Epidemiology of Alzheimer’s disease: Occurrence, determinants, and strategies toward intervention. 2009.
Sosa-Ortiz AL, Acosta-Castillo I, Prince MJ. Epidemiology of Dementias and Alzheimer’s Disease. Arch Med
Res. 2012 Nov;43(8):600-608.
Tatulian SA. Challenges and hopes for Alzheimer’s disease. Drug Discov Today. 2022 Apr;27(4):1027-1043.
Kumar A, Sidhu J, Lui F, Tsao JW. Alzheimer Disease. 2024.
Huang W-J, Zhang X, Chen W-W. Role of oxidative stress in Alzheimer’s disease. Biomed Rep. 2016 May;4(5):519-522.
Calabrò M, Rinaldi C, Santoro G, Crisafulli C. The biological pathways of Alzheimer disease: a review. AIMS Neurosci. 2021;8(1):86-132.
Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine. 2019;14: 5541-5554.
Tatulian SA. Challenges and hopes for Alzheimer’s disease. Drug Discov Today. 2022 Apr;27(4):1027-1043.
Khan H, Ullah H, Aschner M, Cheang WS, Akkol EK. Neuroprotective Effects of Quercetin in Alzheimer’s Disease. Biomolecules. 2019 Dec;10(1):59.
de la Rosa LA, Alvarez-Parrilla E, González-Aguilar GA. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. Wiley-Blackwell; 2010.
Aherne SA, O’Brien NM. Dietary flavonols: chemistry, food content, and metabolism. Nutrition. 2002 Jan;18(1):75-81.
Alok S, Jain SK, Verma A, Kumar M, Mahor A, Sabharwal M. Herbal antioxidant in clinical practice: A review. Asian Pac J Trop Biomed. 2014 Jan;4(1):78-84.
Costa LG, Garrick JM, Roquè PJ, Pellacani C. Mechanisms of Neuroprotection by Quercetin: Counteracting Oxidative Stress and More. Oxid Med Cell Longev. 2016 Jan;2016.
Shimmyo Y, Kihara T, Akaike A, Niidome T, Sugimoto H. Flavonols and flavones as BACE-1 inhibitors: Structure–activity relationship in cell-free, cell-based and in silico studies reveal novel pharmacophore features. Biochim Biophys Acta Gen Subj. 2008 May;1780(5):819-825.
Anand David A, Arulmoli R, Parasuraman S. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn Rev. 2016;10(20):84.
Wang D-M, Li S-Q, Wu W-L, Zhu X-Y, Wang Y, Yuan H-Y. Effects of Long-Term Treatment with Quercetin on Cognition and Mitochondrial Function in a Mouse Model of Alzheimer’s Disease. Neurochem Res. 2014 Aug;39(8):1533-1543.
Sabogal-Guáqueta A M, Muñoz-Manco JI, Ramírez-Pineda JR, Lamprea-Rodriguez M, Osorio E, Cardona-Gómez GP. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology. 2015 Jun; 93:134-145.
Zong Y, Wang J, Zhang Y, Zhang Y, Cheng B, Liu W, et al. miR-29c regulates BACE1 protein expression. Brain Res. 2011 Jun; 1395:108-115.
Rosales PF, Bordin GS, Gower AE, Moura S. Indole alkaloids: 2012 until now, highlighting the new chemical structures and biological activities. Fitoterapia. 2020 Jun; 143:104558.
Lima JA, Hamerski L. Alkaloids as Potential Multi-Target Drugs to Treat Alzheimer’s Disease. In: Studies in Natural Products Chemistry. Elsevier B.V.; 2018. p. 301-334.
Ng YP, Or TCT, Ip NY. Plant alkaloids as drug leads for Alzheimer’s disease. 2015 Oct 01. Elsevier Ltd.
Janssen B, Schäfer B. Galantamine. ChemTexts. 2017 Jun;3(2).
Scott LJ, Goa KL. Galantamine: a review of its use in Alzheimer’s disease. Drugs. 2000 Nov;60(5):1095-1122.
Konrath EL, Passos C D S, Klein-Júnior LC, Henriques AT. Alkaloids as a source of potential anticholinesterase inhibitors for the treatment of Alzheimer’s disease. 2013 Dec.
Saito T, Iwata H, Saito M, Iwata H, Minami Y, Hata S, et al. Early administration of galantamine from preplaque phase suppresses oxidative stress and improves cognitive behavior in APPswe/PS1dE9 mouse model of Alzheimer’s disease. Free Radic Biol Med. 2019 Dec; 145:20-32.
Shilpa V, Balasubramanian S, Ganaie Y, Pindi PK, Ravindra Reddy K, Baddam R. Phytochemical Properties, Extraction, and Pharmacological Benefits of Naringin: A Review. Molecules. 2023 Jul;28(15):5623.
Dashputre NL, Patil M, Chaudhari SR, Deshmukh YS, Sharma A. Potential therapeutic effects of naringin loaded PLGA nanoparticles for the management of Alzheimer’s disease: In vitro, ex vivo and in vivo investigation. Heliyon. 2023 Sep;9(9): e19374.
Dashputre NL, Patil M, Chaudhari SR, Deshmukh YS, Sharma A. Potential therapeutic effects of naringin loaded PLGA nanoparticles for the management of Alzheimer’s disease: In vitro, ex vivo and in vivo investigation. Heliyon. 2023 Sep;9(9): e19374.
Serrano-García N, Pedraza Chaverri J, Barrera Bustillos N. Antiapoptotic Effects of EGb 761. Evid Based Complement Alternat Med. 2013; 2013:495703.
Rapin JR, Zaibi M, Drieu K. In Vitro and in Vivo Effects of an Extract of Ginkgo biloba (EGb 761), Ginkgolide B, and Bilobalide on Apoptosis in Primary Cultures of Rat Hippocampal Neurons. 1998.
Fourtillan JB, Fourtillan M-F, Besse C, Guitard S, Lhoste F. [Pharmacokinetic properties of Bilobalide and Ginkgolides A and B in healthy subjects after intravenous and oral administration of Ginkgo biloba extract (EGb 761)]. Therapie. 1995;50(2):137-144.
Pagotto GLO, Da Silva MM, Gualdron-López M, Martins T da S. Ginkgo biloba: A Leaf of Hope in the Fight against Alzheimer’s Dementia: Clinical Trial Systematic Review. Antioxidants. 2024 May;13(6):651.
Shi C, Fang L, Yew DT, Yao Z, Xu J. Ginkgo biloba extract EGb761 protects against mitochondrial dysfunction in platelets and hippocampi in ovariectomized rats. Platelets. 2010;21(1):53-59.
Shi C, Fang L, Yew DT, Yao Z, Xu J. Ginkgo biloba extract EGb761 protects against aging-associated mitochondrial dysfunction in platelets and hippocampi of SAMP8 mice. Platelets. 2010 Aug;21(5):373-379.
Yang J, Zhang Y, Wang F, Ren Q. Neuroprotective effects of phenylethanoid glycosides in an in vitro model of Alzheimer’s disease. Exp Ther Med. 2017 May;13(5):2423-2428.
Ji S, Sun C, Lv J, Chen Y, Wang Z, Su W, et al. Protective role of phenylethanoid glycosides, Torenoside B and Savatiside A, in Alzheimer’s disease. Exp Ther Med. 2019 Mar.
Yang J, Zhang Y, Wang F, Ren Q. Neuroprotective effects of phenylethanoid glycosides in an in vitro model of Alzheimer’s disease. Exp Ther Med. 2017 May;13(5):2423-2428.
Zhao L, Wang J-L, Liu R, Li X-X, Li J-F, Zhang L. Neuroprotective, Anti-Amyloidogenic and Neurotrophic Effects of Apigenin in an Alzheimer’s Disease Mouse Model. Molecules. 2013 Aug;18(8):9949-9965.
Balez R, Steiner N, Engel M, Tré-Hardy M, Thiry M, Devalck J. Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer’s disease. Sci Rep. 2016 Aug;6(1):31450.
Piccialli I, D’Onofrio G, Di Fiore R,
Masullo M, Squitieri F. Exploring the Therapeutic Potential of Phyto-chemicals in Alzheimer’s Disease: Focus on Polyphenols and Monoterpenes. Front Pharmacol. 2022 May 04.
D’Onofrio G, Squitieri F, Masullo M, Di Fiore R, Piccialli I. Phytochemicals in the Treatment of Alzheimer’s Disease: A Systematic Review. Curr Drug Targets. 2016 Nov;18(13).
Vaiserman A, Koliada A, Lushchak O. Neuroinflammation in pathogenesis of Alzheimer’s disease: Phytochemicals as potential therapeutics. Mech Ageing Dev. 2020 Jul; 189:111259.
Ajdary M, Goudarzi M, Khaki A, Goudarzi H. Health concerns of various
nanoparticles: A review of their in vitro and in vivo toxicity. Nanomaterials (Basel). 2018 Sep 01;8(9):634.
Singh AK, Singh RK, Tripathi K. Therapeutic Potential of Phytoconstituents in Management of Alzheimer’s Disease. J Alzheimers Dis. 2021; 2021:5578574.
Liu Y, Chen Z, Li A, Liu R, Yang H, Xia X. The Phytochemical Potential for Brain Disease Therapy and the Possible Nanodelivery Solutions for Brain Access. Front Oncol. 2022 Jun 23.
Harilal S, Erol O, Jayakumar R. Advancements in nanotherapeutics for Alzheimer’s disease: current perspectives. J Pharm Pharmacol. 2019;71(1):1-32.



