Optical properties analysis of tungsten diselenide nanosheet for optoelectronic applications

Authors

  • Arbab Tahir Department of Physics, International Islamic University, Islamabad, 44000, Pakistan
  • Abdul Rehman HITEC, School and College for Girls, HIT Taxila.
  • Awais Shahid Minhas Department of Basic Sciences and Humanities, University of Engineering and Technology, 47050, Taxila, Pakistan

DOI:

https://doi.org/10.53992/njns.v10i4.285

Keywords:

Transition Metal Dichalcogenide, Tungsten Diselenide, Hydrothermal

Abstract

Two-dimensional transition metal dichalcogenides (TMDCs) have attracted a lot of interest in optoelectronic applications because of their special optical and electrical characteristics. Tungsten diselenide (WSe2) is unique among them because of its powerful photoluminescence, high charge carrier mobility, and adjustable bandgap. The synthesis and characterization of WSe2 nanosheets made using a hydrothermal process are investigated in this work. Diffuse reflectance spectroscopy (DRS), and X-ray diffraction (XRD) were used to examine the optical and structural characteristics. According to the findings, the WSe2 nanosheets have a bandgap of about 1.87 eV, which qualifies them as possible options for high-efficiency solar cells and photodetectors.

References

Cheng Z, Cao R, Wei K, Yao Y, Liu X, Kang J, Dong J, Shi Z, Zhang H, Zhang X. 2D materials enabled next‐generation integrated optoelectronics: from fabrication to applications. Advanced Science. 2021 Jun;8(11): 2003834.

Novoselov KS, Mishchenko A, Carvalho A, Castro Neto AH. 2D materials and van der Waals heterostructures. Science. 2016;353 (6298):aac9439.

Das S, Pandey D, Thomas J, Roy T. The role of graphene and other 2D materials in solar photovoltaics. Advanced Materials. 2019;31(1):1802722.

Dutta T, Yadav N, Wu Y, Cheng GJ, Liang X, Ramakrishna S, Sbai A, Gupta R, Mondal A, Hongyu Z, Yadav A. Electronic properties of 2D materials and their junctions. Nano Materials Science. 2024 Feb 1;6(1):1-23.

Zhao M, Huang YH, Ma F, Hu TW, Xu KW, Chu PK. Electronic states in hybrid boron nitride and graphene structures. Journal of Applied Physics. 2013;114(6).

Liu Z, Song L, Zhao S, Huang J, Ma L, Zhang J, Lou J, Ajayan PM. Direct growth of graphene/hexagonal boron nitride stacked layers. Nano letters. 2011 May 11;11(5):2032-2037.

Watanabe MO, Itoh S, Mizushima K, Sasaki T. Bonding characterization of BC2N thin films. Applied Physics Letters. 1996;68(21):2962-2964.

Kawaguchi M, Kawashima T, Nakajima T. Syntheses and structures of new graphite-like materials of composition BCN(H) and BC3N(H). Chemistry of Materials. 1996;8(6): 1197-1201.

Song L, Ci L, Lu H, Sorokin PB, Jin C, Ni J, Kvashnin AG, Kvashnin DG, Lou J, Yakobson BI, Ajayan PM. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano letters. 2010 Aug 11;10(8):3209-3215.

Han GH, Rodríguez-Manzo JA, Lee CW, Kybert NJ, Lerner MB, Qi ZJ, Dattoli EN, Rappe AM, Drndic M, Johnson AC. Continuous growth of hexagonal graphene and boron nitride in-plane heterostructures by atmospheric pressure chemical vapor deposition. Acs Nano. 2013 Nov 26;7(11):10129-11138.

Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan PH, Eda G. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano. 2013;7(1):791-797.

Schutte WJ, De Boer JL, Jellinek F. Crystal structures of tungsten disulfide and diselenide. Journal of Solid State Chemistry. 1987;70(2):207-209.

Voß D, Krüger P, Mazur A, Pollmann J. Atomic and electronic structure of WSe2 from ab initio theory: bulk crystal and thin film systems. Physical Review B. 1999;60(20):14311.

Fominski Y, Nevolin VN, Romanov RI, Titov VI, Scharff W. Tribological properties of pulsed laser deposited WSex(Ni)/DLC coatings. Tribology Letters. 2004;17:289-294.

Makarov D, Pallesche R, Maret M, Ulbrich TC, Schatz G, Albrecht M. Growth of Pt thin films on WSe2. Surface Science. 2007;601(9):2032-2037.

Fang H, Chuang S, Chang TC, Takei K, Takahashi T, Javey A. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Letters. 2012;12(7):3788-3792.

Cao S, Liu T, Hussain S, Zeng W, Peng X, Pan F. Hydrothermal synthesis of variety low-dimensional WS2 nano-structures. Materials Letters. 2014;129: 205-208.

Wen R, Wei A, Tao L, Luo D, Liu J, Yang Y, Xiao Z, Liu Z, Zhao Y. Hydrothermal synthesis of WSe2 films and their application in high-performance photodetectors. Applied Physics A. 2018;124:1-8.

Zhang DQ, Jia YX, Chai JX, Xu ZX, Zhao ZL, Cao MS. Preparation of WS2 nanosheets by one-step hydrothermal method. In: 2017 International Conference on Manufacturing Engineering and Intelligent Materials (ICMEIM 2017). Atlantis Press. 2017:433-436.

Packiaseeli SA, Rajendran V, Vijayalakshmi R. Structural, optical and morphological study of tungsten selenide thin films. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(4):703.

Lan F, Yang R, Xu Y, Qian S, Zhang S, Cheng H, Zhang Y. Synthesis of large-scale single-crystalline monolayer WS2 using a semi-sealed method. Nanomaterials. 2018;8(2):100.

Downloads

Published

22-12-2025

How to Cite

Tahir, A., Rehman, A., & Shahid Minhas, A. (2025). Optical properties analysis of tungsten diselenide nanosheet for optoelectronic applications. NUST Journal of Natural Sciences, 10(4), 29–35. https://doi.org/10.53992/njns.v10i4.285