Immunohistochemical profiling of TNF-α in invasive ductal carcinoma of the breast - A cohort study from Rawalpindi, Pakistan
DOI:
https://doi.org/10.53992/njns.v10i1.245Keywords:
Breast cancer, Inflammation, TNF-α, Lymph node metastasis, NecrosisAbstract
Breast cancer remains the most prevalent malignancy among women globally, and its incidence increasing, especially in developing countries. In Pakistan, breast cancer poses a significant public health challenge, with a notably high incidence rate among women. Tumor necrosis factor alpha (TNF-α) is a multifunctional cytokine that is commonly up-regulated in various tumors and is considered a tumor promoter element. Reports suggest the involvement of varying levels of TNF-α affecting Breast Cancer susceptibility. Given the diverse genetic, environmental, and lifestyle factors influencing cancer susceptibility, the expression and role of TNF- α in breast cancer may vary across regions. Therefore, it is crucial to explore its expression within specific to understand local disease biology and prognosis. We investigated the expression of TNF-α in 50 different female patients of invasive ductal carcinoma (IDC) of breast using immunohistochemical analysis. Fifty breast tumor biopsy samples and 17 lymph node biopsy specimens were collected. Our findings reveal an elevated expression of TNF-α in most cases analyzed within the local population. Elevated levels of TNF-α were particularly pronounced in metastatic tumors. Additionally, we observed a progressive increase in TNF-α expression in the endothelium as the tumor grade advanced (p-value= 0.044*). This study emphasizes the significant pro-tumor role of TNF in breast cancer within the local population, with elevated expression particularly evident in metastatic and higher-grade tumors.
References
Bazzoni, F. and B. Beutler, The tumor necrosis factor ligand and receptor families. N Engl J Med, 1996. 334(26):1717-1725.
Philip, M., D.A. Rowley, and H. Schreiber, Inflammation as a tumor promoter in cancer induction. Semin Cancer Biol, 2004. 14(6):433-439.
Szlosarek, P.W. and F.R. Balkwill, Tumour necrosis factor alpha: a potential target for the therapy of solid tumours. Lancet Oncol, 2003. 4(9): 565-573.
Lee, P.P., Wang, Y., Ren, E.C. Functional significance of MMP-9 in tumor necrosis factor-induced proliferation and branching morphogenesis of mammary epithelial cells. Endocrinology, 2000. 141(10): 3764-3773.
Varela, L.M., Stangle‐Castor, N. C., Shoemaker, S. F., Shea‐Eaton, W. K., & Ip, M. M. TNFalpha induces NFkappaB/p50 in association with the growth and morphogenesis of normal and transformed rat mammary epithelial cells. J Cell Physiol, 2001. 188(1):120-131.
Warren, M.A., Shoemaker, S. F., Shealy, D. J., Bshara, W., & Ip, M. M. Tumor necrosis factor deficiency inhibits mammary tumorigenesis and a tumor necrosis factor neutralizing antibody decreases mammary tumor growth in neu/erbB2 transgenic mice. Mol Cancer Ther, 2009. 8(9):2655-
Cho, S.G., Li, D., Stafford, L. J., Luo, J., Rodriguez‐Villanueva, M., Wang, Y., & Liu, M. KiSS1 suppresses TNFalpha-induced breast cancer cell invasion via an inhibition of RhoA-mediated NF-kappaB activation. J Cell Biochem, 2009. 107(6):1139-1149.
Kochumon, S., Al-Sayyar, A., Jacob, T., Bahman, F., Akhter, N., Wilson, A., Sindhu, S., Hannun, Y.A., Ahmad, R. and Al-Mulla, F. TGF-beta and TNF-alpha interaction promotes the expression of MMP-9 through H3K36 dimethylation: implications in breast cancer metastasis. Front Immunol, 2024. 15:1430187.
Yu, L., Wang, L., Li, M., Zhong, J., Wang, Z., & Chen, S. Expression of toll-like receptor 4 is down-regulated during progression of cervical neoplasia. Cancer Immunol Immunother, 2010. 59(7):1021-1028.
Suganuma, M., Okabe, S., Marino, M. W., Sakai, A., Sueoka, E., & Fujiki, H. Essential role of tumor necrosis factor alpha (TNF-alpha) in tumor promotion as revealed by TNF-alpha-deficient mice. Cancer Res, 1999. 59(18):4516-4518.
Ioculano, M., Altavilla, D., Squadrito, F., Canals, P., Squadrito, G., Saitta, A., Campo, G.M. and Caputi, A.P. Tumour necrosis factor mediates E-selectin production and leukocyte accumulation in myocardial ischaemia-reperfusion injury. Pharmacol Res, 1995. 31(5):281-288.
Basseres, D.S. and A.S. Baldwin, Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene, 2006. 25(51):6817-6830.
Enss, M.L., Cornberg, M., Wagner, S., Gebert, A., Henrichs, M., Eisenblätter, R., Beil, W., Kownatzki, R. and Hedrich, H.J. Proinflammatory cytokines trigger MUC gene expression and mucin release in the intestinal cancer cell line LS180. Inflamm Res,
49(4):162-169.
Wislez, M., Philippe, C., Antoine, M., Rabbe, N., Moreau, J., Bellocq, A., Mayaud, C., Milleron, B., Soler, P. and Cadranel, J. Upregulation of bronchioloalveolar carcinoma-derived C-X-C chemokines by tumor infiltrating inflammatory cells. Inflamm Res, 2004. 53(1):4-12.
Naylor, M.S., Stamp, G.W., Foulkes, W.D., Eccles, D., Balkwill, F.R. Tumor necrosis factor and its receptors in human ovarian cancer. Potential role in disease progression. J Clin Invest, 1993. 91(5):2194-2206.
Kulbe, H., Hagemann, T., Szlosarek, P. W., Balkwill, F. R., & Wilson, J. L. The inflammatory cytokine tumor necrosis factor-alpha regulates chemokine receptor expression on ovarian cancer cells. Cancer Res, 2005. 65(22): p. 10355-10362.
Chen, G. and D.V. Goeddel, TNF-R1 signaling: a beautiful pathway. Science, 2002. 296(5573):1634-1635.
Beutler, B. and A. Cerami, The common mediator of shock, cachexia, and tumor necrosis. Adv Immunol, 1988. 42: 213-231.
Pirianov, G. and K.W. Colston, Interactions of vitamin D analogue CB1093, TNFalpha and ceramide on breast cancer cell apoptosis. Mol Cell Endocrinol, 2001. 172(1-2):69-78.
Sainson, R.C., Johnston, D.A., Chu, H.C., Holderfield, M.T., Nakatsu, M.N., Crampton, S.P., Davis, J., Conn, E. and Hughes, C.C. TNF primes endothelial cells for angiogenic sprouting by inducing a tip cell phenotype. Blood, 2008. 111(10): 4997-5007.
Gerlach, H., Lieberman, H., Bach, R.O.N.A.L.D., Godman, G., Brett, J.E.R.O.L.D. and Stern, D. Enhanced responsiveness of endothelium in the growing/motile state to tumor necrosis factor/cachectin. J Exp Med, 1989. 170(3):913-931.
Frater-Schroder, M., Risau, W.,
Hallmann, R., Gautschi, P., & Böhlen, P. Tumor necrosis factor type alpha, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo. Proc Natl Acad Sci U S A, 1987. 84(15):5277-5281.
Dong, R., Wang, Q., He, X. L., Chu, Y. K., Lu, J. G., & Ma, Q. J. Role of nuclear factor kappa B and reactive oxygen species in the tumor necrosis factor-alpha-induced epithelial-mesenchymal transition of MCF-7 cells. Braz J Med Biol Res, 2007. 40(8):1071-1078.
Bates, R.C. and A.M. Mercurio, Tumor necrosis factor-alpha stimulates the epithelial-to-mesenchymal transition of
human colonic organoids. Mol Biol Cell, 2003. 14(5):1790-1800.
Miettinen, P.J., Ebner, R., Lopez, A. R., & Derynck, R.. TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: nvolvement of type I receptors. J Cell Biol, 1994. 127(6 Pt 2):2021-2036.
Ding, G., I. Pesek-Diamond, and J.R. Diamond, Cholesterol, macrophages, and gene expression of TGF-beta 1 and fibronectin during nephrosis. Am J Physiol, 1993. 264(4 Pt 2):F577-F584.
Diamond, J.R., S.D. Ricardo, and S. Klahr, Mechanisms of interstitial fibrosis in obstructive nephropathy. Semin Nephrol, 1998. 18(6):594-602.