PHYTOCHEMICAL AND ETHNOBOTANICAL EFFECT OF ALOE VERA

Madiha khan niazi 1*, Farooq hassan2, kinza jalal1, khadija riaz1, Amjed ismail3, Ana Ambreen4, Rizwan Asif4, Ruba Iftikhar3.

1University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan.

2Assistant Director of tibb PHC (punjab healthcare commission) Lahore, Pakistan.

3 Faculty of Eastern Medicine, Hamdard University Lahore, Pakistan.

4 Faculty of Eastern Medicine, Qarshi University Lahore, Pakistan.

*Corresponding Author: dr.madihaniazi@gmail.com

Abstract

Aloe vera is part and parcel of the Liliaceae family. This is one of 250 Aloe Barbadensis species, scientifically known as Aloe Vera. Acemannane, one of the most bioactive polysaccharides of Aloe Vera, has effects of immunity modulation, anti-cancer, anti-oxidation, bone repair, neuroprotection and promotion of intestinal health. The mucilaginous gel in the pulp of aloe vera formed by the parenchymal cells has been used for a variety of curative applications since ancient times. Aloe vera is a nutraceutical product used mostly for decades. It is available in a range of health drinks and wellness beverages, in capsules/tablets and in gels & creams externally. This article includes the bioactive components, extraction and processing of aloe vera and the prospects of tissue engineering. This article highlights important uses as a nutraceutical, medicinal, and therapeutic food potential of A. vera constituents. Aloe vera nutraceutical gel scaffolds, such as acemannan, promote biomedical biomedical and polymeric tissue management. The presence of over 200 phytochemicals was revealed by Aloe vera gel. Aloe vera gel from its leaves is extracted and the stabilisation and preparation of the final products requires adequate processing techniques.

Keywords: Aloe vera, bioactive compounds, phytocomponents, Aloins
Introduction:

Aloe vera is a permanent green herb with light and bright yellow flowers found in North Africa, the Middle East of Asia, the South Mediterranean, and the Channel Islands. Aloe vera (Aloe barbadensis Miller, Xanthorrhoeaceae). Aloe vera is derived from the Arabic words "allaeh," which mean "brilliant bitter substances". While it is similar to garlic, asparagus and onions, aloe vera is a succulent plant that looks like a cactus (Surjushe, A et al., 2008). It has stemless leaves with circular leaf sheaths that are grayish to dark green in appearance and tiny white teeth on the margins. The leaves are made up of 3 layers: an inner gel, a yellow fluid, and a densecoating of 15-20 cells that makes up the rind. Aloe leaves are being used for cosmetic and pharmaceutical applications and also in fresh foods for a long time but the scientific basis for such properties is unknown. Latex and gel are the two primary ingredients of aloe vera. The latex, also known as aloe juice or aloe sap, is a bitter yellow abscess that comes from the pericyclic tubules underneath the leaf's skin surface and makes up about 20-30% of the weight of the whole leaf. In comparison to older leaves the young leaves had larger latex component amounts. The colorless, tasteless gel on the other side is the pulp or mucilage from the plant's parenchymatous cells in the internal part of leaf. These days, it is well understood that the gel which accounts for roughly 70-80 percent of total mass of the leaf serves as plant's energy and water storage portion (Akinyele, B. O et al., 2007). Since exudates compounds can infiltrate gel during the gel preparation it's difficult to tell whether the biological effect may be due to the gel or the latex while the whole Aloe Vera leaf is used. Aloe vera leaves' colorless mucilaginous gel has been commonly used in cosmetic and pharmaceutical purposes. For thousands of years, aloe vera is also used in traditional medicine for its medicinal potential, particularly on the skin. Furthermore Aloe vera has been shown to have antidiabetic, anticancer, antihyperlipidemicand
More than 75 different compounds are contained in aloe vera including minerals like zinc, copper, selenium, and calcium, enzymes like amylase, catalase, and peroxidase, vitamins vit. A, C, E, and B12, sugars monosaccharides like mannose-6-phosphate and polysaccharides like glucomannans, hormones auxins and gibberellins, anthraquinones saloin and emodin, fatty acids areleuoeol and campesterol and others salicylic acid, lignin, and saponins.

Sources:

1. Source of biology: Aloe barbadensis Miller, also known as Curacao aloes (Aloe Vera). Aloe perryi baker.

2. Geographical source: Aloe is an eastern and southern African plant that is cultivated in the Cape Colony of Zanzibar and the Socotra Islands. Also it's grown on Caribbean islands in Europe, as well as in many parts of India, along with the North West Himalayan region.

Structures of aloevera:
Composition of Aloe vera:

Aloe Vera is a tender, rich plant with water (99-99.5 percent). Solids are 0.5 percent to 1.0 percent, and comprise various active components such as fats, water-soluble minerals, vitamins, polysaccharides, organic acids, enzymes and phenolic compounds (Hamman, 2008). There are three layers in the leaf – gel, latex, and rind.

1) **Gel:** soft, clear, moist, slippery interior fabric with big parenchyma cells. It’s like a mucilaginous transparent jelly. It includes water (99%), glucose, amino acid (89%), fat, sterol and vitamins (Ramachandra and Rao, 2008; Hammann, 2008; Benítez et al. 2015).

2) **Latex:** Anthraquinone medium layer, saphir bitter yellow, glycosides (Hamman, 2008).

3) **Rind:** 15-20 cells in the thick outer layer protecting the matrix of gel and contributing to carbon and protein synthesis (Misir et al., 2014).
Rind and gel are the biggest part of the entire weight of the blade (20-30 percent and 70-80 percent, respectively).

Dry gel:

55% of the gel are polysaccharides, 17% of it is sugar, 7% protein, 4% lipids, 16% minerals, 1% of the vitamins A, C, E and B1, B2 and B12, and 1% of the vitamins E. (Ahlawat and Khatkar, 2011; Ni et al., 2004; Radha and Laxmipriya, 2015).

Phytochemicals of Aloe vera:

Aloe contains two classes of Aloins:

1. **Nataloins:** that produce nitric acid picric and oxalic acids, and don't give nitric acid red colours.
2. **Barbaloins:** Barbaloin acid roughening (C7H2N3O5), chrysammic acid (C7H2N2O6) and oxalic nitric acid. This second group can be composed of barbalins from aloes from barbados, reddened cold and barbalins from soothrins and sanzibar aloes, which are rotated with normal nitric acid only when heated and acid fuming in the cold. Shiny yellow scales of natural forms. Barbaloin is formed of yellow prismatic crystals. (Nirala K. 2020).

various compounds present in aloe vera gel:

<table>
<thead>
<tr>
<th>Class</th>
<th>Compounds</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amino Acid</td>
<td>Cysteine, arginine, alanine, aspartum acid, glycines, histidines, sulphur, phenylalanines, prolins, threonine, serins and tyrosine, as well as valines and glycosins, leukines, lysin and methionines.</td>
<td>(Nwaoguikpe et al., 2010)</td>
</tr>
<tr>
<td>Anthraquinone</td>
<td>Anthrax, anthracin, anti-anthraxic acid, aloe-emodine, chrysophanic acid, emodine, etereal oil, cinnemonic acid ester, isobarbarbaloin, resistannol A&B, anthracine, barbaroin.</td>
<td>(Kilic, 2005)</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>Arabinous, cellulose, fructose, fumar, glucose, galactose, maltose, mannose, pectic, rhama, sucrose, uronic acid and xylosis. lignins and sugars</td>
<td>(Bozioni et al., 2007)</td>
</tr>
<tr>
<td>Chromones</td>
<td>A-7- Omethylaloediol A-8- Cglucosyl-(S)-alosol 8-C-glucosy-(2'-Ocinnamoyl) 8-C-glucosyl-7-oethyl(S) aloesol, 8- C-glucosyl-noreugenine 8-C, isoalosine D, isorabaichromone, and neoalosine A.</td>
<td>(Hamman, 2008)</td>
</tr>
<tr>
<td>Enzymes</td>
<td>Phosphoxidase alkaline, amylase, carboxypeptidase, catalase, cyclooxygenase, cyclooxygenase, lipase, oxidase, peroxidase, carboxypylase phosphoenolpyruvate, and dismutase superoxide</td>
<td>(Saeed et al., 2004)</td>
</tr>
<tr>
<td>Hormones</td>
<td>Auxins and gibberllins</td>
<td>(Samuelsson and Bohlin, 2004)</td>
</tr>
</tbody>
</table>
Inorganic Compounds: Calcium, potassium, iron, phosphorous, manganese, sodium, chromium, and zinc minerals are all minerals.

Miscellaneous: Organic compounds and lipids included and uric acid. Triglycerides, Titerpenoid, Potassium Sorbate.

Organic Acids: Sub-cutaneous, citric acid, pyruvone, succinic acid, tartaric acid, fumaric acid, lactic acid, malic acid, pyruvate.

Proteins: Lectins

Sterols: Cholesterol, campesterol, lupeol and beta sitosterol

Vitamins: Vitamin C, A, E, B1, B2, B9, B6 and choline

Ethnobotanical effects and its mechanisms:

<table>
<thead>
<tr>
<th>Uses</th>
<th>Mechanism</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cosmetic uses</td>
<td>The three different plant preparations are Aloe vera latex, gel and Aloe veraentire cellulose gum that can work individually and combinably with the biological components. There are not many new applications in the market for Aloe vera cosmetics at concentrations of Aloe vera.</td>
<td>(Boudreau et al., 2006.) (Grindlay, D et al., 2005) (Eshun, K et al., 2004)</td>
</tr>
</tbody>
</table>
1% to 98% Alovera. Humidifiers, cleansers, sun lotions, dentures, oral laundries, creams and deodians, shampoos are just a few of its beauties and toiletries. Aloe based cosmetic substances do not have ananthraquinone Level of 50 ppm, since this is too low for phototoxicity. (Franz, Ch et al., 2005)

Healing wounds: Polysaccharides and the growth hormone gibberellins can decrease wrinkling by increasing collagen and elastin output. The fast healing ability of Aloe vera is determined by the presence of 10,000-20,000 mucopolysaccharides per litre. Furthermore, Aloe vera's effects in scar tissue healing and scar prevention regarding skin injury are possibly due to the action of amino acids needed for new cell formation and the ability of its enzymes (Talmadge, J et al., 2004)
Anti-inflammatory action and immunity activity:	Salicylic acid, which is both analgesic and anti-inflammatory, prevents the formation of prostaglandins from arachidonic acid. As a result, Aloe has been used to treat arthritis and joint issues. Aloe polysaccharides increase immune response.	(Feily et al., 2009) (Yu, Z. H et al 2009)
Effects on skin exposure to UV and X-radiation:	Though its precise function of aloe vera in the treatment of first and second degree burns is unknown, it appears to help. It's possible that lectin is to blame for the therapeutic impact.	(Maenthaisong et al., 2007)
Effects on ulcers:	Skin ulcers in particular, including mouth ulcers, herpes simplex and psoriasis, may be treated with aloe vera. This plant has been developed to help prevent gastric ulcers from developing.	(Djeraba et al., 2000)
Antidiabetic activities:	Other synthetic components, such as vanadium, manganese and copper, as well as carbohydrates found in	(Geremias et al., 2006)
	to promote cell regeneration in the deepest sections of the skin.	
Aloe vera may have anti-diabetic properties. This plant has been related to lower blood sugar levels in diabetic patients and reducing blood lipid levels or cholesterol in hyperlipidaemic patients (roughly 30% less).

<table>
<thead>
<tr>
<th>Antioxidant activities:</th>
<th>Antioxidant properties have been investigated. The operation of aloe vera was comparable to that of alpha-tocopherol. It has also been discovered that plant's development phase is crucial for these practices.</th>
<th>(Miladi, S et al., 2008)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laxative effects:</td>
<td>Aloe vera latex contains anthraquinones, which act as a sedative by increasing intestinal peristaltic movement.</td>
<td>(Lee, K. Y et al., 2000)</td>
</tr>
<tr>
<td>Antibacterial properties:</td>
<td>Many studies have found that Aloe vera prevents the bacterial growth such as Streptococcus pyogenes, Shigella flexneri, and Klebsiellaasp, especially Gram-positive bacteria that cause</td>
<td>(Alemdar, Set al., 2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Feily, A et al., 2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Antifungal activity:</td>
<td>While inhibitory effects towards Candida has been published, antifungal activity has received less attention. Because of its antifungal properties, aloe vera is used as a fish liquid fertilizer dry shampoo.</td>
<td></td>
</tr>
<tr>
<td>(Sumbul, S et al., 2004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antiviral and antitumor activity:</td>
<td>These results may be due to directly or indirectly impacts directly due to anthraquinones and indirectly by immune response activation As a result, clinical studies are currently underway to gather definitive evidence of Aloe vera usein HIV/AIDS and cancer prevention.</td>
<td></td>
</tr>
<tr>
<td>(Ikeno, Y et al., 2002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age-related effects:</td>
<td>On pathogen-free rats, aloe vera was studied, with positive results for age-related disorders.</td>
<td></td>
</tr>
<tr>
<td>(Takahashi et al., 2009)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food uses</td>
<td>It's been used as a origin of nutritional foods like yogurt and in the production of healthy beverages like tea. Botanical products are well-</td>
<td></td>
</tr>
<tr>
<td>(Eshun, K et al., 2004.)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
known for their use as a dietary supplement for health promotion and disease prevention. Aloe vera can be used as an active packaging to help preserve freshness and consistency of foods. The depletion of natural ingredients including complete polyphenol and citric acid was significantly delayed in table grapes covered with Aloe gel. Aloe vera does, in fact, inhibit the growth of microorganisms that cause food poisoning in man and livestock as well as foodborne diseases.

Since aloe vera has no effect on the taste or appearance of food it appears to hold promise as a healthy, organic, and ecologically responsible compared to natural additives. The FDA has approved the internal use of gel as a nutritional supplement in the United States. The feed industry may use aloe vera as a sensory additive functional

(Serrano et al., 2006.)
Processing of aloe vera

Aloe vera was used as an ingredient in different formulations. The processing of Aloe Vera in different preparations is therefore necessary which can be easily integrated depending on the product nature (Ramachandra and Rao, 2008). Aloe vera is generally prepared in juice, concentrate and powder for different applications.

Aloe vera juice

Unwanted components (leaves base, leaves top, conical dots and sleeping margins of the leaves) are removed traditionally, and the fillets have now been cleaned to prepare the juice. It is added to the pulper which extracts the juice when it is refreshed. The juice is kept at low temperatures, so that sensitive molecules do not lose the bioactivity (Ahlawat and Khatkar, 2011). The base and tip of the leaf are removed and ground like a slurry that creates an alternating method for preparing a juice for the consistency of a soup. In order to release cell components the cellulose enzyme is treated. A number of ground filters are then produced through the material to avoid impurity (e.g. rind particles). During the grinding process, the resulting liquid is removed through the debris extractor from the big pulp and rind parts. Finally, several filters pass aloin, emodine, leaf traces, sand and other particles across the material. This method contains three times more bioactive ingredients compared to conventional juice (Ramachandra and Rao, 2008).

Aloe vera concentrate

Aloe vera jus is concentrated in vacuum for 120 seconds at less than 50°C (125 mm Hg). The requirements for temperature and vacuum should be carefully adapted to avoid bioactive losses because the bioactive elements are sensitive to temperature and pressure (Ramachandra and Rao, 2008). The juice is concentrated to meet the desired
coherence, which is ideal for different food uses such as jams, juices, jellies and squash.

Aloe vera powder

The Aloe Vera fillets shall be washed, moistened and dried at the desired temperature in the fillets with hot air. Freezes have also been reported for drying and drying. Afterwards, the dried material is powdered and packaged. Aloe vera contains bioactional, temperature-sensitive compounds that are harmful to traditional drying techniques. The bioactivity can remain inactive and time consuming through a freezing drying process. The efficient alternative to conventional and freeze drying can be used by new microwave drying aid. This technique involves removing moisture from the product by using microwave heating and complete drying methods. The process is energy efficient, cost-effective and delivers quick operation and improved product quality (Khan et al., 2016).

Extraction of Aloe Vera Gel and Powder

Exploitation and refining of gel and powder through aloe vera gel has become a large industry around the worldwide despite to developments in the food, medicine, and cosmetic industries. Fresh gel can be extracted from aloe vera leaves and prepared for later use. Extraction efficiency is determined by plants, growing conditions (e.g., temperature, volume of water, fertilization), harvest period, and extraction process. Extraction of aloe vera gel often includes several processing steps such as smashing, grinding, and pressing the whole leaf, or filleting to scrape the outer leaf and grinding the gel to obtain aloe juice, which is then accompanied by various filtering and
The processing steps will modify the characteristics of polysaccharides by making structural modifications, which could result in certain changes in the proposed physiological and medicinal properties of these constituents. To increase product consistency and conserve and retain almost all of the bioactive chemical entities naturally present in the plant, a simple but effective extraction technique must be produced. Time, temperatures, and sterilization are also crucial in preserving the biological compounds of aloe vera (Chandegara and Varshney 2013).
Spray Drying and Freeze Drying

Aloe vera leaves begin to lose biological activity within six hour of room temperature harvest, and the majority of biological activities are totally lost after 24 hours. The extraction of gel from the leaves is supported by the addition of cellulose dissolution compounds, and aloe liquids frequently treat laxative aloine and anthraquinones with activated carbon for discoloration and removal. Centrifugal activity on aloe gel breaks that sugar chain which is encircled by gel molecules and leads to additional gel regeneration and gel freezing (Chandegara...
and Varshney 2014). Aloe vera gel is strengthened by concentrating it to reduce water content, dry it to make a firm powder and add preservatives and other components, including sodium benzoate and citric acid (Rahman, Carter et al. 2017). Due to its biochemical activities, Aloe Vera’s nutritional effects. Even when concentrated under vacuum, the biological activities of the aloe vera gel can be maintained. The mercury vacuum of 125 mm, concentrations of below 50 C, and a period of two minutes shall be performed at this level (Sehgal, Winters et al. 2013). Spray drying and freeze drying are the most popular techniques for the production of aloe vera powder through gel. Although aloe vera powder is less dense, easier to treat and less vulnerable to long-term storage contamination, it is critical to maintain the biodiversity of the product (Minjares-Fuentes, Femenia et al. 2016).

Hot water extraction

Acemannan discovered that aloe gel, a polysaccharide consisting of (1,4)linked heavily acetylated mannoses, (1,4)linked glucose, and (1,6)linked galactose, is present in the internal leaf. Various techniques were used to extract bioactive components of aloe, including acemannan. the separation process, from which the crystal formula is obtained. Particularly, processing in hot water and ethanol is by far the most simple approach in the laboratory and is widely used in industry(Thunyakitpisal, Ruangpornvisuti et al. 2017). Cleaning, homogenization, isolation, and centrifugation of Aloe vera are all steps in the water extraction process. For 12 hours, the supernatant was obtained and blended with absolute ethanol at a 1:3 ratio. The precipitate formed was gathered and spun down in a centrifuge. Dialysis was used to extract acemannan(Ali, Dwivedi et al. 2016).

Complications and precautions:

Aloe vera is usually considered safe but some side effects and complications have occurred. Some side effects can be used for constipation therapy, like abdominal cramps, flatulence and grips (Mulay, 2014). The use of aloe vera may encourage bleeding during the operation; its use should therefore be stopped at least two weeks before the surgery is performed. Aloe vera can be used with furosemide or digoxin to lower the potassium
level in the body and therefore not to use for these drug treatments, for irregular rhythms in the heart and for congestive cardiac failure. The loss of sodium can cause secondary hyperaldosteronism and loss of potassium can lead to fatigue, weak muscles, weight loss, mental illness or kidneys failure. The loss of potassium can lead to electrolytic imbalance (Mulay, 2014). Aloe vera skin and steroid creams can increase absorption (e.g. hydrocortisone with creams). Allergic effects like skin rashes can occur when aloe vera gel is applied to open or deep wounds, but can be used without injury in safety on the skin (Surjushe et al., 2008). A recently associated risk of tumour and colon cancer with anthraquinone and aloin present in aloe vera gel (Aldhous, 2011; Mulay, 2014). In cosmetic products with aloe vera the photooxidation input (especially aloe emodin) of anthraquinone not exceeding 50 ppm should be avoided (Boudreau, M. D. and Beland, F. A., 2006; Christaki and Florou-Paneri, 2010).

Conclusion:

Due to its unique and appealing physiochemical and biological properties aloe vera has a promising future for tissue engineering applications. It has auxins and gibberellin hormones that can be used in wound healing and it also have anti-inflammatory actions. Saponins has cleansing and antiseptic properties. The information shared in this review update on aloe vera might be fruitful for better understanding in the direction in search of plant origin drugs.

References:

- Benítez, S., Achaerandio, I., Pujolà, M., Sepulcre, F., 2015. Aloe vera as an alternative to traditional edible coatings used in fresh-cut fruits: A case of study with kiwifruitslices.

characteristics, biological activities and pharmacological applications of acemannan, a polysaccharide from aloe vera: A review." Molecules 24(8): 1554.

• Boudreau, M. D. and Beland, F. A. 2006. An evaluation of the biological and toxicological properties of Aloe barbadensis (Miller), Aloe vera. J.

