Review Article

Therapeutic potential of medicinal mushrooms - A review of bioactive compounds and clinical application

Munir Ozturk1*, Mehmet Ozturk2, Cansel Cakir3, Moonisa Derwash4, Abrar Yousaf4

Abstract

All through human history, mushrooms have been valued as nutritional foods. They have been extensively used as nutraceuticals and as a source for the generation of pharmaceutical-grade medicines to treat a wide variety of diseases, including cancer. During the past more than 3 decades, numerous scientific studies on medicinal mushrooms have been conducted in Japan, China, Korea, the USA, Russia, the UK, Pakistan, Turkiye, as well as other countries. A limited number of highly purified compounds derived from some of these mushrooms are now used as pharmaceutical-grade products in medicine-especially for cancer treatment. The most wellknown medicinal mushrooms worldwide, both edible and inedible, include Ganoderma lucidum, Lentinus edodes, Phellinus linteus, Porio cocos, Auricularia auricula, Hericium erinaceus, Grifola frondosa, Flammulina velutipes, Pleurotus ostreatus, Trametes versicolor, Tremella fuciformis, and Schizophyllum ensemble. The regular consumption of edible mushrooms is said to offer significant health benefits. Some compounds recently isolated from these mushrooms have been found to exhibit potent immunomodulatory, antitumor, cardiovascular, antiviral, antibacterial, antiparasitic, hepatoprotective, and antidiabetic characteristics. This study provides an overview of mushrooms with medicinal potential and explores the unique health-promoting properties of some bioactive compounds derived from them.

Keywords: Medicinal Mushrooms, Functional Food, Cancer.

Article History: Received: 04 Oct 2025, Revised: 24 Oct 2025, Accepted: 25 Oct 2025, Published: 18 Nov 2025.

Creative Commons License: NUST Journal of Natural Sciences (NJNS) is licensed under Creative Commons Attribution 4.0 International License.

Introduction

The saying "Let food be your medicine and medicine be your food" from Hippocrates, c 400 B.C., as well as the old Chinese proverb stating, "medicine and food have a

common origin". These sayings have become a truism for majority of us [1 - 9]. A food can be regarded as functional when it contains a component that affects some functions in the body positively. Functional food science is thus one of the fast-

¹Botany Department and Centre for Environmental Studies, Ege University, Izmir, Turkiye ²Department of Chemistry, Science Faculty, Mugla Sıtkı Koçman University, Mugla, Turkiye ³School of Technical Medical Higher Education, Ankara Medipol University, Ankara, Turikye ⁴Punjab Agricultural University, Regional Research Station-Ballowal Saunkhri, SBS Nagar, India

^{*}Corresponding author's email: munirozturk@gmail.com

developing branches that has evolved from the awareness of interrelationships between diet and disease [10]. It is quite distinct from the medical and pharmaceutical sciences. It is also defined as a food that encompasses potentially healthful products, including any modified food or food ingredient providing a health benefit beyond the traditional nutrients it contains [11]. Several names are used for functional foods: dietary supplements, Nutra-or nutraceuticals, medical foods, vita foods, pharma foods. phytochemicals, biochemopreventatives, mycochemicals, designer foods, and foods for specific health uses [12 - 15]. A lot of confusion is observed over these names on a commercial However, the term dietary supplement (DS) is now being more widely accepted and recognized, which means a product intended to supplement enhance health [2]. Today diet is accepted as a factor closely associated with human health, controlling and regulating many functions in our body necessary to reduce the risk of many chronic diseases together with participation in the maintenance of homeostasis. It is indeed a paradox that nutrition is essential to support life but can also be considered as a causation of many chronic diseases. Many causes of death or disability such as coronary heart disease, strokes, diabetes, atherosclerosis, obesity and certain forms of cancer are now attributed to diet [16 - 27]. On the other hand, regular consumption of classical functional foods like fruits and vegetables are now considered as essential ingredients in cancer prevention programmes [28 - 33]. Nutrition science has lately developed into a field mainly dealing with greater understanding of the physiological and genetic mechanisms by which diet and individual food components influence.

Functional foods cannot claim to cure diseases but, their increasing role in the prevention is clear [28, 34]. The main aim of the functional food science is to identify beneficial interactions between the

presence or absence of a food component and a specific function in the body, and to understand their mechanisms. Today many types of cancer are linked to inappropriate diets. This presentation will discuss mainly large fleshy mushrooms which play a role in the prevention and cure of cancer. Many reports enlighten the fact that some mushrooms could have profound health-promoting benefits [35 - 39]. Presently many wild forms are regularly collected and used directly as a source of food in several countries. However, the fear of mushroom poisoning does exist [40 - 44].

Historical background of mushrooms

The mushrooms have been used by humans in antiquity with the earliest records dating back to Palaeolithic times. In fact, early civilizations developed practical a knowledge of edible and poisonous or psychotropic forms by trial and error. Many papers published up till now clearly depict their ancient usage related to the psychoactive, hallucinogenic properties of some like species of Psilocybe and Panaeolus. and Amanita muscaria. These mushrooms have been used in ancient religious beliefs and practices, and several mushroom stones dating back to 3000 BC have been found at Mayan excavation sites in Guatemala [2]. Ancient Romans regarded them as "the foods of the Gods" resulting from bolts of lightning thrown to the earth by Jupiter during thunderstorms, **Egyptians** considered them as "a gift from the God Osiris" Chinese accepted them as "the elixir.

There are many stories related to the deadly poisonous mushrooms like *Amanita phalloides*. Claudius II and Pope Clement VII are strongly believed to have died by mushroom poisoning. Some legends even suggest that the Buddha died in this way. Several thousand years ago Orient people knew that several edible and non- edible mushrooms were beneficial for health [35, 45]. The outstanding work on traditional

Chinese medicines published in 1575 documents some 20 mushroom species, but presently at least 270 species are known to have various therapeutic properties and more than 100 species are used by traditional practitioners for a wide range of ailments like hypercholesterolemia, high blood pressure, diabetes, anti-viral, antibacteria, and antioxidant and free radical scavenging, in addition to their nutritional value [5, 6. 45 - 52]. Many of these mushroom-derived medicinal products are now produced by major Japanese, Korean and Chinese pharmaceutical companies and are used worldwide by holistically oriented physicians, chiropractors, herbalists and naturopathic.

Characteristics of mushrooms

Mushrooms are a large and heterogeneous group including more than 12,000 species, all having macroscopic fruit-bodies, and are large enough to be seen by the naked eye They are non-photosynthetic [53]. organisms with different growth behavior, occupying a special place in Eumycota, and are divided into Ascomycetes (Morchella, truffles) and Basidiomycetes species). The mushrooms in general have a wide range of shapes (umbrella, kidney, flower, stalk etc.), sizes (1-20 cm or more), cap diameter, weighing from few to several hundred grams, and a great color diversity. Most species are saprophytic flourishing in nature on fallen leaves droppings, and stumps of dead wood [40].

The mushrooms multiply by producing millions of spores, which germinate and branch to form a mycelium in a suitable environment. Later colonizes the substrate and uses the available nutrients but change into a productive sexual stage if nutrients run out or weather changes. In the cultivation process the spores are not used due to their small size as well as the genetic characteristics which are a little different from their parent. Some mycelia are pregrown under sterile conditions, and this is

called spawn. It has ability to colonize the growing substrate. Consistent production of successful mushroom crops greatly depends upon the practical experience [54]. Up till now 35 species of mushrooms have been cultivated commercially with about 20 cultivated on scale.

Nutritional value of mushrooms

Mushrooms have long been valued as nutritional foods [55]. Fresh mushrooms have a high moisture content reaching 90 percent, so the shelf life is short. They are a good source of digestible proteins, values being above most vegetables but less than most meats and milk, varying between 10-40 percent on dry weight basis. They contain all essential amino acids, but amount varies according to the species, growth medium, growth conditions and stage of maturation at the time of picking. The Sulphur containing amino acids, methionine and cystine are limited [54, 56], whereas lysine is dominant amino acid in almost all mushrooms. Most mushrooms are relatively poor in crude fat (2-8 percent on dry bases), but less than 1% on fresh weight basis. Most of their fatty acids are unsaturated but include all the main classes of lipid compounds including free fatty acids, mono-, di- and triglycerides, sterol esters and ds [56].

They are regarded as low calorific foods. Total carbohydrates generally represent more than 50 percent of dry matter; pentoses, hexoses and their derivatives; disaccharides being the main component of carbohydrates. The fresh mushrooms contain 3-21% carbohydrates. They are rich in crude fiber which cannot be digested easily by humans and varies between 3-35 percent on dry weight basis, in this way the calorific value of most mushrooms is low. They are a good source for several vitamins such as thiamine (B1), riboflavin (B2), niacin, biotin and ascorbic acid (Vit C). B1, B2, niacin as well as ergo sterol, provitamin D2 which can be converted to vitamin D,

but are poor in vitamin C. Vitamins A and D are relatively uncommon although several species contain detectable amounts of β -carotene and ergosterol which change into active vitamin D under light. Mushrooms are considered as a good source of minerals including substantial quantities of phosphorous and potassium, lesser amounts of calcium and trace elements.

Medicinal value of mushrooms

The best-known medicinal mushrooms on global scale both edible and non-edible are Ganoderma lucidum (Reishi or Ling Zhi), Lentinus (Lentinula) edodes (Shiitake), Phellinus linteus, Porio cocos, Auricularia auricula. Hericium erinaceus. Grifola frondosa (Maitake), Flammulina velutipes, Pleurotus ostreatus (Oyster mushroom), Trametes (Coriolus) versicolor, Tremella fuciformis, and Schizophyllum commune. Regular consumption of edible mushrooms is reported to introduce a functional or medicinal contribution in the diet of humans [57 - 5]. Some of the compounds recently isolated and identified from the medicinal mushrooms are reported to show very good immunomodulatory, antitumor, cardiovascular, antiviral, antibacterial, antiparasitic, hepatoprotective, antidiabetic properties.

Therapeutically the medicinal mushrooms are normally consumed as powdered concentrates or extracts in hot water. The extract is also concentrated and used as a drink or freeze-dried or spray-dried to form powders permitting granular handling, transportation and consumption [59]. In capsular form these can be considered as dietary supplements or nutraceuticals mushroom Nutritional's are crude mixtures and differ from pharmaceuticals which are chemical preparation. Continuous use of these concentrates is said to increase the immune responses of body, thus resistance to disease and causing even regression of the

disease state [35, 61 - 62].

During the last 30 years many scientific investigations have been undertaken on medicinal mushrooms in Japan, China, Korea and lately USA, Turkiye and Pakistan [63 - 69]. All these demonstrate that the compounds extracted from these mushrooms have unique health improving characteristics. The most important feature of these extracts is their ability to function immunomodulators. Therefore, the physiological constitution of host defense mechanisms is improved by their intake which restores homeostasis. immunology has become a rapidly growing field in basic cancer research. The antipolysaccharides isolated mushrooms are either water-soluble β-Dglucans, β-D-glucans with heterosaccharide chains xylose, of mannose, galactose or uronic acid or β-Dglucan-protein complexes-proteoglycans. Some are orally bioavailable.

Among the main medically important polysaccharide compounds that have undergone clinical trials. Lentinan (Lentinus edodes) has demonstrated strong anti-tumor activity in human clinical trials by prolonging the survival of patients with gastric and colorectal cancer with no side effects. It has been approved as a drug in Japan and is considered an important adjuvant treatment for several cancers. Schizophyllum (Schizophyllum commune) has proved useful in gastric cancers and has also increased the survival time of patients with head and neck cancers without any side effects. Similarly, very promising results have been obtained from Grifron-D (Grifola frondosa) on breast, prostate, lung, liver, and gastric cancers in Japan and US. Two compounds, PSK and PSP, derived from mycelial cultures of Trametes versicolor have shown good anti-cancer properties: cancers of the stomach, esophagus, nasopharynx, colon, rectum and lung, and subsets of breast cancer, when given with traditional chemotherapeutic agents with no side-effects. The ability of these compounds to enhance or suppress immune responses depends on several factors such as dosage, administrative route and frequency, timing and mechanism of activity.

The mushroom polysaccharides used in cancer treatments are generally effective by the intravenous route, but some are effective orally. In Japan, Korea, and China these compounds are also used now on a large scale singly or in mixtures as adjuncts to standard radio- and chemotherapy, and when taken as a supplement, they show beneficial effects on the quality of life for some advanced cancer patients. Perhaps the most encouraging observations from most of these studies are the ability of the mushroom-derived polysaccharides when taken before and during radiotherapy and/or chemotherapy to significantly reduce the side-effects of these treatments.

Conclusions

All through human history, mushrooms have been valued as nutritional foods but act as dietary supplements when used as tonics. They have been extensively used as nutraceuticals and as a source for the generation of pharmaceutical-grade medicines to treat a wide variety of diseases, including cancer. A limited number of highly purified compounds derived from some of these mushrooms are now used as pharmaceutical-grade products medicine-especially in for treatment. No significant short or longterm adverse effects have been reported in connection with the use of the purified mushroom polysaccharides derived from Ganoderma spp., Lentinus edodes. Schizophyllum Tremella commune, fusiformis, Trametes versicolor, Grifola frondosa and more recently Phellinus and Many Hericium erinaceus. of traditional uses have been confirmed and new applications developed [70 -77]. The safety criteria for mushroom- derived βglucans have been studied at length in preclinical trials. Acute, subacute and chronic toxicity tests have been carried out together with administration during pregnancy and lactation without any adverse effects, as well as no Similar results have been obtained from the safety point of view advantages in using mushroom products are: Most medicinal mushrooms are commercially cultivated (no wild collection), which guarantees identification and relatively pure, unadulterated products; Easy vegetative propagation kept to one clone; The mycelium can be stored for a long time; Genetic and biochemical consistency can be checked at any time; The ability to grow most medicinal mushrooms as mycelium in fermenters under co conditions ensures reliability.

Several pharmaceutical companies accept medicinal mushrooms as a rich source of biomedical molecules. Many polysaccharide-bound proteins produced by Basidiomycete fungi have been classified as anti-tumor chemicals by the US National Cancer Institute [61].

Finally, from a holistic consideration, the consumption of whole edible medicinal mushrooms or extracts or concentrates (dietary supplements) may well offer novel, highly palatable, nutritious, and health-benefiting ingredients as functional foods [78].

References

- 1. Ozturk M, Ozcelik H. Useful plants of East Anatolia. Ankara: SİSKAV Press; 1991: 200.
- 2. Smith J, Rowan N, Sullivan R. Medicinal mushrooms: their therapeutic properties and current medical usage with special emphasis on cancer treatments. Cancer Research UK. 2002.
- 3. Ozturk M, Altay V, Gucel S, Altundağ E. Plant diversity of the drylands in southeast Anatolia, Turkey: role in

- human health and food security. In: Ansari AA, Gill SS, editors. *Plant biodiversity: monitoring, assessment and conservation*. Wallingford (UK): CABI Publishing; 2016: 66.
- 4. Öztürk M, Altundağ E, Ibadullayeva SJ, Altay V, Aslanipour B. A comparative analysis of medicinal and aromatic plants used in the traditional medicine of Iğdır (Turkey), Nakhchivan (Azerbaijan), and Tabriz (Iran). Pakistan Journal of Botany. 2018;50(1):337-343.
- 5. Deveci E, Tel-Çayan G, Duru ME, Öztürk M. Chemical constituents of Porodaedalea pini mushroom with cytotoxic, antioxidant and anticholinesterase activities. Journal of Food Measurement and Characterization. 2019;13(4): 2686-2695.
- 6. Deveci E, Tel-Çayan G, Duru ME, Öztürk M. Isolation, characterization, and bioactivities of compounds from Fuscoporia torulosa mushroom. Journal of food biochemistry. 2019 Dec;43(12): e13074.
- 7. Ozturk M, Egamberdieva D, Pešić M, editors. *Biodiversity and biomedicine:* our future. London (UK): Academic Press, Elsevier Inc.; 2020: 561.
- 8. Mehdi YH, Ozturk M, Altay V, Nojadeh MS, Alakbarli F. Ethnopharmacological study of medicinal plants from Khoy city of West Azerbaijan, Iran. Indian Journal of Traditional Knowledge. 2020;19(2):251–267.
- 9. Malik K, Ahmad M, Ozturk M, Altay V, Zafar M, Sultana S. Herbals of Asia: prevalent diseases and their treatments. Cham (Switzerland): Springer Nature; 2021; 507.
- 10. Sadler M, Saltmarsh M, editors. Functional foods: the consumer, products and the evidence. Royal Society of Chemistry. 1998.
- 11. Thomas PR, Earl R, editors. Enhancing the food supply. In: Opportunities in nutrition and food science. National

- Academy Press, Washington (DC). 1994: 98-142.
- 12. Hasler CM. Functional foods: the Western perspective. Nutr Rev. 1996;54(11 Pt 2): S6-10.
- 13. Head RJ, Record IR, King RA. Functional foods: approaches to definition and substantiation. Nutrition reviews. 1996 Nov 1;54(11): 517-520.
- 14. Zeisel SH. Regulation of" nutraceuticals". Science. 1999 Sep 17; 285(5435):1853-1855.
- 15. Sarwat M, Ozturk M. Molecular Signaling During Communicable and Non-communicable Diseases. Current Pharmaceutical Design. 2020 Feb 1;26(4):395.
- Carter J. Food: Your Miracle Medicine. HarperCollins Publishers Inc., New York. 1993.
- 17. Barasi M. *Human nutrition: a health perspective*. London: Arnold; 1997.
- 18. Durmuskahya C, Ozturk M. Ethnobotanical survey of medicinal plants used for the treatment of diabetes in Manisa, Turkey. Sains Malaysiana. 2013;42(10):1431-1438.
- 19. Ozturk M, Altay V, Latiff A, Ziaee MA, Choudhry MI, Shaheen F, Durmuşkahya C. A comparative analysis of the medicinal plants used for diabetes mellitus in the traditional medicine of Turkey, Pakistan, and Malaysia. In: Ozturk M, Hakeem KR, editors. Plant and human health. Vol. 1. Cham (Switzerland): Springer Nature; 2018: 409-461.
- 20. Ozturk M, Altay V, Latiff A, Shareef S, Shaheen F, Iqbal M, Choudhry MI. Potential medicinal plants used in the treatment of hypertension in Turkey, Pakistan, and Malaysia. In: Ozturk M, Hakeem KR, editors. Plant and human health. Vol. 1. Cham (Switzerland): Springer Nature; 2018; 595-618.
- 21. Gönenç TM, Ozturk M, Türkseven SG, Kirmizibayrak PB, Günal SE, Yilmaz S. Hypericum perforatum L. An overview of the anticancer potencies of the specimens collected from different

- ecological environments. Pak. J. Bot. 2020 Jun 1;52(3):1003-1010.
- 22. Rashid MI, Tariq P, Rashid H, Ali Z, Andleeb S, Gul A, Ozturk M, Altay V. Superbugs, silver bullets, and new battlefields. Biodiversity and Biomedicine. 2020 Jan 1:81-106.
- 23. Khan F, Szmigielski R, Gul A, Altay V, Ozturk M. Advancements in plant transgenomics approach for biopharmaceuticals and vaccine production. In: Ozturk M, Egamberdieva D, Pešić M, editors. Biodiversity and biomedicine: our London: future. Academic Press: 2020:317-333.
- 24. Khan DA, Hamdani SD, Iftikhar S, Malik SZ, Zaidi NU, Gul A, Babar MM, Ozturk M, Turkyilmaz Unal B, Gonenc T. Pharmacoinformatics approaches in the discovery of druglike antimicrobials of plant origin. Journal of Biomolecular Structure and Dynamics. 2022 Nov 2;40(16):7612-7628.
- 25. Masoodi KZ, Amin I, Mansoor S, Ahmed N, Altay V, Ozturk M. Botanicals from the Himalayas with anticancer potential: an emphasis on the Kashmir Himalayas. In: Ozturk M, Hakeem KR, Ashraf M, Ahmad M, editors. Biodiversity and biomedicine: our future. London: Academic Press. 2020;189-234.
- 26. Hamzah TNT, Ozturk M, Altay V, Hakeem KR. Insights into the bioactive compounds of endophytic fungi in mangroves. In: Ozturk M, Hakeem KR, editors. Biodiversity and biomedicine: our future. London: Academic Press; 2020:277-292.
- 27. Ozturk M, Tel G, Çayan F, Duru ME. Promising small molecules against cancer from Ganoderma genus. In: Ozturk M, Egamberdieva D, Pešić M, editors. Biodiversity, conservation and sustainability in Asia. Vol. 1: Prospects and challenges in West Asia and Caucasus. Springer Nature Switzerland AG. 2021: 139-174.

- 28. Steinmetz KA, Potter JD. Vegetables, fruit, and cancer. I. Epidemiology. Cancer Causes Control. 1991; 2:325–357
- 29. Ozturk M, Roy A, Bhat RA, Sukan FV, Tonelli FM, editors. Synthesis of bionanomaterials for biomedical applications. Elsevier; 2023 Jan 1: 558.
- 30. Ozturk M, Kamili AN, Altay V, Rohela GK. Mulberry: from botany to phytochemistry. Cham (Switzerland): Springer Nature. Springer Briefs in Plant Science. 2024: 183.
- 31. Ozturk M, Sridhar KR, Sarwat M, Altay V, Huerta-Martínez FM, editors. Ethnic knowledge and perspectives of medicinal plants. Vol. 1: Curative properties and treatment strategies. Palm Bay (FL): Apple Academic Press, Taylor & Francis Group; 2024: 664.
- 32. Ozturk M, Sridhar KR, Sarwat M, Altay V, Huerta-Martínez FM, editors. Ethnic knowledge and perspectives of medicinal plants. Vol. 2: Nutritional and dietary benefits. Palm Bay (FL): Apple Academic Press, Taylor & Francis Group. 2024: 668.
- 33. Ünal BT, Türker H, Ozturk M. Ex-situ conservation of medicinal and aromatic plants using in vitro techniques. In: Ansari R, et al., editors. Plants such as medicine and aromatics: pharmacognosy, ecology and conservation. Taylor & Francis Group, CRC Press. 2023: 13-22.
- 34. Saris WH, Asp NG, Björck I, Blaak E, Bornet F, Brouns FJ, Frayn KN, Fürst P, Riccardi G, Roberfroid M, Vogel M. Functional food science and substrate metabolism. British Journal of Nutrition. 1998 Aug;80(S1): S47-75.
- 35. Hobbs C. Medicinal mushrooms: an exploration of tradition, healing, and culture. Santa Cruz (CA): Botanica Press; 1995.
- 36. Öztürk M, Duru ME, Kivrak Ş, Mercan-Doğan N, Türkoglu A, Özler MA. In vitro antioxidant, anticholinesterase and antimicrobial activity studies on three Agaricus

- species with fatty acid compositions and iron contents: A comparative study on the three most edible mushrooms. Food and Chemical Toxicology. 2011 Jun 1;49(6):1353-1360.
- 37. Tel G, Apaydın M, Duru ME, Öztürk M. Antioxidant and cholinesterase inhibition activities of three Tricholoma species with total phenolic and flavonoid contents: the edible mushrooms from Anatolia. Food Methods. Analytical 2012 Jun;5(3):495-504.
- 38. Tel G, Çavdar H, Deveci E, Öztürk M, Duru ME, Turkoğlu A. Minerals and metals in mushroom species in Anatolia. Food Additives & Contaminants: Part B. 2014 Jul 3;7(3):226-231.
- 39. Tel G, Ozturk M, Duru ME, Turkoglu A. Antioxidant and anticholinesterase activities of five wild mushroom species with total bioactive contents. Pharmaceutical biology. 2015 Jun 3;53(6):824-30.
- 40. Mat A. Mushroom poisoning in Turkey and poisonous mushrooms. Ankara: TÜBİTAK Publications. Ankara-Turkey. 1998; 183.
- 41. Tel-Cayan G, Ozturk M, Duru ME, Turkoglu A. Fatty acid profiles in wild mushroom species from Anatolia. Chemistry of Natural Compounds. 2017 Mar;53(2):351-353.
- 42. Tel-Cayan G, Ozturk M, Duru ME, Yabanli M, Türkoğlu A. Content of minerals and trace elements determined by ICP-MS in eleven mushroom species from Anatolia, Turkey. Chiang Mai J Sci. 2017;44(3):939-945.
- 43. Ullah Z, Öztürk M, Ertaş A, Wahab AT, Mansour RB, Choudhary MI. Insight into isolation and elucidation of cytotoxic ergostanoids from the mushroom Sarcosphaera crassa (Santi) Pouzar: An edible mushroom. Steroids. 2022 May 1;181:108990.
- 44. Khan I, Ullah Z, Shad AA, Fahim M, Öztürk M. In vitro antioxidant, anticholinesterase inhibitory, and

- antimicrobial activity studies of Terminalia chebula (Retz) and Terminalia arjuna (Roxb). South African Journal of Botany. 2022 May 1;146:395-400.
- 45. Bensky D, Gamble A. *Chinese Materia medica*. 2nd ed. Seattle: Eastland Press; 1993
- 46. Ying JZ, Mao XL, Ma QM, Zong YC, Wen HA. Icons of Medicinal Fungi from China. Translated by Xu YH. Beijing: Science Press. 1987.
- 47. Öztürk M, Tel-Çayan G, Muhammad A, Terzioğlu P, Duru ME. Mushrooms: a source of exciting bioactive compounds. Studies in natural products chemistry. 2015 Jan 1; 45:363-456.
- 48. Raks V, Öztürk M, Vasylchenko O, Raks M. Ganoderma species extracts: Antioxidant activity and chromatography. Biotechnologia Acta.2018;11(3):69-77.
- 49. Çayan F, Tel-Çayan G, Deveci E, Öztürk M, Duru ME. Chemical profile, in vitro enzyme inhibitory, and antioxidant properties of Stereum species (Agaricomycetes) from Turkey. International Journal of Medicinal Mushrooms. 2019;21(11):1075-1087.
- 50. Erol E, Ali Z, Ozturk M, Khan S, Khan IA. Inhibition of iNOS induction and NF-κB activation by taste compounds from the edible mushroom Tricholoma caligatum (Viv.) Ricken. Rec Nat Prod. 2020;14(1):77-82.
- 51. Tel-Çayan G, Muhammad A, Deveci E, Duru ME, Öztürk M. Isolation, structural characterization, and biological activities of galactomannans from Rhizopogon luteolus and Ganoderma adspersum mushrooms. International Journal of Biological Macromolecules. 2020 Dec 15; 165:2395-2403.
- 52. Taş M, Küçükaydın S, Tel-Çayan G, Duru ME, Öztürk M, Türk M. Chemical constituents and their bioactivities from truffle Hysterangium inflatum. Journal of Food Measurement and Characterization. 2021 Oct;15(5):4181-

- 4189.
- 53. Lincoff GH. The Audubon Society field guide to North American mushrooms. Alfred A. Knopf. New York: Alfred A. Knopf. 1984.
- 54. Chang ST. Cultivated mushrooms. Handbook of applied mycology. Marcel Dekker, New York.1991;3:221-40.
- 55. Chang ST, Miles PG. Edible mushrooms and their cultivation. CRC Press, Boca Raton. 1989.
- 56. Breene WM. Nutritional and medicinal value of specialty mushrooms. Journal of food protection. 1990 Oct 1;53(10):883-894.
- 57. Aziawa K. Antitumour-effective mushroom, meshimakobu, Phellinus linteus. Tokyo: Gendai-shorin; 1998.
- 58. Mizuno T. Development of an antitumor biological response modifier from Phellinus linteus (Berk. et Curt.) Teng (Aphyllophoromycetideae): a review. Int J Med Mushrooms. 2000;2(1):21-33.
- 59. Mizuno T, Sakai T, Chihara G. Health foods and medicinal usages of mushrooms. Food Reviews International. 1995 Feb 1;11(1):69-81.
- 60. Chang ST, Buswell JA. Mushroom nutriceuticals. World Journal of Microbiology and biotechnology. 1996 Sep;12(5):473-476.
- 61. Jong SC. Birmingham, J.M. and Pai, S.H. Immunomodulatory substances of fungal origin. Journal of Immunology and Immunopharmacology. 1991; 11:115-22.
- 62. Stamets P. MycoMedicinals: an informative booklet on medicinal mushrooms. 3rd ed. Mycomedia, Olympia, Washington. 2000.
- 63. Çayan F, Tel-Çayan G, Deveci E, Duru ME, Öztürk M. Isolation and identification of compounds from truffle Reddellomyces westraliensis and their antioxidant, cytotoxic and enzyme inhibitory activities. Process Biochemistry. 2022; 121:553-562.
- 64. Kaplaner E, Aydoğmuş-Öztürk F, Öztürk M, Akata I, Duru ME.

- Anatoluin A and B isolated from medicinal Tricholoma anatolicum are new cytotoxic ergostanoids against the most common cancers. Natural Product Research. 2023 Nov 17;37(22):3787-3797
- 65. Şavkıncı G, Küçükaydın MT, Kuş C, Küçükaydın S, Duru ME, Ozturk M. Isolation and characterization of compounds from truffle Melanogaster broomenaus and their bioactivities. Chem Biodivers. 2024;21(11): e202400890.
- 66. Ullah Z, Ozturk M, Ting Z, Yang L. Cytotoxic investigation of new compounds from a poisonous consumable mushroom Sarcosphaera coronaria (Jacq.) J. Schröt. (Syn: Sarcosphaera crassa (Santi) Pouzar). Nat Prod Res. 2024 Dec 20:1-1.
- 67. Ullah Z, Ozturk M, Ting Z, Yang L. Cytotoxic investigation of new compounds from a poisonous consumable mushroom Sarcosphaera coronaria (Jacq.) J. Schröt. (syn: Sarcosphaera crassa (Santi) Pouzar). Natural Product Research. (Article in Press). 2025: 1-11.
- 68. Berdesh T, Çakir C, Çam D, Tuna K, Yeskaliveva Öztürk В. Determination of cytotoxic compounds of Lepista personata (Fr.) Cooke by gas chromatography-mass spectrometry (GC-MS) and chemometrics. Analytical Letters. 2025 Aug 13;58(12):2007-2018.
- 69. Cam D, Çakır C, Karaman AH, Abdelsalam AH, Sıcak Y, Akata I, Arslan S, Öztürk M. Characterization of the cytotoxic compounds of Lactarius salmonicolor R. Heim and Leclair by gas chromatography-mass spectrometry and chemometrics. Analytical Letters. 2025 Aug 13; 58(12): 2103-2021.
- 70. Wasser SP, Weis AL. Medicinal properties of substances occurring in higher Basidiomycetes mushrooms: current perspectives (review). Int J Med Mushrooms. 1999; 1:31-62.

- 71. Wasser SP, Weis AL. General description of the most important medicinal higher Basidiomycetes mushrooms. *Int J Med Mushrooms*. 1999;1(4):351–370.
- 72. Tel-Çayan G, Öztürk M, Duru ME, Rehman MU, Adhikari A, Türkoğlu A, Choudhary MI. Phytochemical investigation, antioxidant and anticholinesterase activities of Ganoderma adspersum. Industrial Crops and Products. 2015 Dec 15; 76:749-754.
- 73. Tel-Çayan G, Muhammad A, Duru ME, Öztürk M, Adhikari A, Türkoğlu A. A new fatty acid ester from an edible mushroom Rhizopogon luteolus. Natural Product Research. 2016 Oct 17;30(20):2258-2264.
- 74. Altuntaş D, Allı H, Kaplaner E, Öztürk M. Determination of fatty acid constituents and macro-nutritional properties of some lactarius species. Turkish Journal of Agriculture: Food Science and Technology. 2016;4(3): 216-220.

- Kuş Ç, Küçükaydın MT, Küçükaydın S, Duru ME, Öztürk M. Mycochemical investigation, antioxidant, cytotoxic and enzyme inhibition activities of truffle Picoa lefebvrei. Steroids. 2025 Jun 11:109651.
- 75. Olmez OT, Kaplaner E, Ozturk M. Impact of collection locations and host trees on the bioactive triterpene composition and antioxidant activity of four Ganoderma species: a chemometric analysis. Chemistry & Biodiversity. 2025: e202500206.
- 76. Koç H, Özcan-Kaynak S, Çakır C, Akata I, Sıcak Y, Öztürk M. Investigation of Polyol Components and Anti-Inflammatory Activity of 14 Wild Mushrooms Growing in Turkey. Analytical Letters. 2025 Oct 4:1-22.
- 77. Öztürk M, Tel G, Öztürk FA, Duru ME. The cooking effect on two edible mushrooms in Anatolia: fatty acid composition, total bioactive compounds, antioxidant and anticholinesterase activities. Records of Natural Products. 2014;8(2):189-194.