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Introduction 

In the current, Fourth Industrial Revolution 

(4IR or Industry 4.0) era, the digital world 

is inundated with data, such as mobile data, 

Internet of Things (IoT) data, cybersecurity 

data, business data, health data, social 

media data, etc. [1]. A variety of intelligent 

applications can be built within the 

pertinent domains by utilizing the insights 

that can be extracted from this data. For 

example, cybersecurity data can be used to 

create an automated and intelligent 

cybersecurity system [2]. To perform 

proficient analysis of this data, to construct 

intelligent automated applications artificial 

intelligence (AI) techniques are extensively 

applied. Artificial intelligence (AI) has 

evolved significantly in the past few years 

in the realms of data analysis and 

computing, which often enables the 

applications to perform intelligently [3]. 

Artificial intelligence (AI) and Pattern 

recognition (PR) technologies have a 

significant impact on many facets of our 

daily lives, and their importance is rapidly 

expanding. These technologies have real-

world applications in a variety of fields, 

including but not limited to Chatbots, image 

recognition, self-driving cars, are creation, 

gaming, and predictive analysis [4]. This 

demonstrates the diverse range of 
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applications where PR and AI technologies 

make a significant impact, enhances 

efficiency, accuracy, and personalization in 

numerous industrial and everyday aspects 

of life.  

Predicting patterns is a vital aspect of 

diverse domains, including cognitive 

psychology, computer science and machine 

learning. It allows us to understand 

complex systems and make informed 

decisions based on available data. It is a key 

component of many machines learning 

algorithm that seek to find patterns in big 

data sets. These algorithms use machine 

learning techniques to identify patterns and 

make predictions based on those 

algorithms. Several machine learning 

methods have been used over the years to fit 

collections of training datasets with 

attributes to predict such characteristics on 

sets of unknown data. There is no optimal 

method for every optimization issue, 

according to the "No Free Lunch theorem," 

which was put forth in 1997 by Wolpert and 

Macready [5]. An approach that excels on 

one problem may utterly fails on another. 

There are numerous machine learning 

methods available currently for predicting a 

function f(x). One of the earliest techniques 

was polynomial based technique, which is 

still widely used for scientific data and in 

industries like digital photography and 

image resampling. 

There is a long and successful history to the 

fundamental challenge of predicting 

patterns in data. For instance, Tycho 

Brahe's comprehensive astronomical 

observations throughout the 16th century 

enabled Johannes Kepler to deduce the 

empirical laws governing planetary motion, 

which later served as a foundation for the 

invention of classical mechanics. At the 

turn of twentieth century analysis of 

irregularities of atomic spectra resulted in 

development of quantum physics. The 

automatic detection of regularities in data 

using computer algorithms is the primary 

concern of the field of pattern recognition 

and using these patterns to perform actions 

like categorizing the data into various 

groups or making predictions among few of 

these activities.  

Although Gaussian processes (GPs) were 

developed in the 1940s [6], it wasn't until 

1978 that they were used to specify prior 

distributions over functions. Gaussian 

processes have begun to be employed for 

regression problems [7] and supervised 

machine learning more recently because of 

the advent and rising popularity of neural 

networks with back propagation. Many 

attempts have been made in recent years to 

enhance established methods, most notably 

by the University of Chicago team led by 

Robert B. Gramacy, who introduced treed 

Gaussian processes [8] and dynamic trees 

[9]. In 1996, Radford Neal demonstrated 

that a Bayesian neural network with an 

infinite hidden node count and a Gaussian 

prior on individual weights converges to a 

GP [10]. 

A rational spline with cubic polynomial as 

numerator and quadratic polynomial as 

denominator of the fractal form using 

iterative functions have been developed by 

Balasubramani [13]. The uniform error 

limit was calculated to be of 𝐶2.  

In the realms of Computer aided geometric 

design, curves with minimum bending 

energy or with minimum arc length are 

considered fair.  The “Circle transition 

problem” for Quadratic Bezier functions 

have been investigated in [12] and 

expressions for arc length and minimum 

bending energy were developed.  

Shape conserving Iterative system [13] has 

been built using a cubic/quadratic rational 

spline and conditions on shape and scaling 

parameter have been computed. Infinite 

numbers of Fractal interpolants can be 

generated by varying shape and scaling 

parameter.  An approximation technique for 

self-similar wiggly functions has been  
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developed in [14]. Pattern identification and 

preservation is attained by adjusting scaling 

factors. Barnsley [14] introduced iterated 

function system on continuous function  

𝐹: 𝐼 → 𝑅 , which interpolates the data a, 

𝐹(𝑒𝑖) = 𝑓𝑖 for 𝑖 ∈ {0,1,2, . . , 𝑛} where 𝐼 =
[𝑒0, 𝑒𝑛]  and 𝑓𝑖 ∈ 𝑅. The attractors of 

iterative function were the graph of this 

continuous function. Some important 

results for fractal function were proposed 

like existence, coding, theory, and 

functional equation. By fluctuating 

functions, the geometrical applications of  

nature was described. Some kind of self-

similarity under magnification such as in 

cloud tops and mountain ranges were 

described. The problem of fractal 

interpolation has been solved by using 

harmonic functions in [15].  

The renowned subdivision algorithm 

namely de Casteljau has been used in [16] 

to establish that Bezier curves are fractals 

and new techniques to render these curves 

have been developed. In [17], Beizer curves 

of rational form have been used for 

interpolation and shape modification. 

Beizer curves with trigonometric basis 

functions and two shape parameters have 

been developed in [18] for the problem of 

interpolation. 

The problem of presenting inherent data 

characteristic has been dealt in [19] with a 

piece wise rational cubic technique. The 

desired shape characteristics are achieved 

by four shape control parameters in the 

description of rational function. The author 

in [20] also worked on shape conserving 

interpolating function and established a 

rational technique to visualize positive data 

set.  

Three main shape features of data that is 

convexity, monotonicity and positivity has 

been discussed in [21] and interpolation 

techniques based on trigonometric 

quadratic function following geometric 

continuity have been developed and 

implemented successfully. Here again 

authors used two shape parameters to 

modify and control the shape of the curve. 

In Kocić L.M et.al [22], self-similarity 

embedded in subdivision property of 

Bernstein polynomial proved to be faster to 

evaluate Bezier curves. The more general 

type of classical interpolating function has 

been replaced by iterated fractal 

interpolation function in [23]. A more 

general form of Mazel approach has been 

developed in [24]. A rational Beizer curve 

with affine invariant characteristic meeting 

generalized monotonicity has been 

purposed in [25].  

Section 2 thoroughly describes the process 

underwent for the development of 

supervised computing algorithm to detect 

and predict hidden data patterns.  A Cubic 

C Beizer fractal function with four shape 

parameters has been constructed to identify 

underlying data patterns and make 

predictions which satisfies data attributes. 

Algorithms to identify underlying shape 

characteristics have been developed in 

Section 3 and 4. Four types of different data 

sets, in Section 5 have been chosen to apply 

the proposed approach. Section 6 discusses 

conclusion and future directions. A typical 

supervised learning flow diagram 

concludes the current section. 

 

Materials and Methods 

In this section, the novel model 

construction is presented with the help of 

rational cubic C Bezier function. and 
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classical fractal theory. Four new shape 

control parameters are introduced in this 

method to simulate the patterns actively. 

Furthermore, scale parameters are used to 

adjust the irregularity. 

Model Formulation 

Consider the data points {(𝑒𝑖, 𝑓𝑖),   𝑖 =
0,1,2, … , 𝑛} defined over the closed interval 
[𝑎, 𝑏] where 𝑎 = 𝑒0 < 𝑒1 < 𝑒2 < ⋯ <
𝑒𝑛 = 𝑏 . The rational cubic C-Bezier curve 

defined over each sub-interval 𝐼 =
[𝑒𝑖, 𝑒𝑖+1] , 𝑖 = 0,1,2,3,… , 𝑛 −1 with four 

shape parameters is represented as follows. 

 𝑟𝑖(𝑒) =
𝑝(𝑡)

𝑞(𝑡)
                                         (2.1) 

where, 

𝑝(𝑡) =∑𝑉𝑖𝑈𝑖(𝑡)𝑄𝑖

3

𝑖=0

                         (2.2) 

𝑞(𝑡) =∑𝑉𝑖𝑈𝑖(𝑡)

3

𝑖=0

                              (2.3) 

and 

𝑡 =
𝜋

2
(
𝑒−𝑒𝑖

ℎ𝑖
) , 𝑡 ∈ [0,

𝜋

2
],   ℎ𝑖 = 𝑒𝑖+1 − 𝑒𝑖, 

then equation (2.1) becomes 

𝑟𝑖(𝑒) =
∑ 𝑉𝑖𝑈𝑖(𝑡)𝑄𝑖
3
𝑖=0

∑ 𝑉𝑖𝑈𝑖
3
𝑖=0 (𝑡)

                       (2.4) 

where the basic functions are defined as: 

 𝑈0(𝑡) =
2

(𝜋−2)
(−𝑐𝑜𝑠𝑡 − 𝑡 + (

𝜋

2
)), 

𝑈1(𝑡) =
2

(𝜋−2)(4−𝜋)
((2 − 𝜋)𝑠𝑖𝑛𝑡 +

2𝑐𝑜𝑠𝑡 + 2𝑡 − 2), 

𝑈2(𝑡) =
2

(𝜋−2)(4−𝜋)
(2𝑠𝑖𝑛𝑡 + (2 −

𝜋)𝑐𝑜𝑠𝑡 − 2𝑡 + (𝜋 − 2)), 

𝑈3(𝑡) =
2

(𝜋−2)
(−𝑠𝑖𝑛𝑡 + 𝑡), 

𝑄𝑖
ʹs are the control points and 𝑉𝑖

ʹs, i = 0, 1, 

2, 3 are weight parameters. 

The fractal interpolator function is, 

𝛹(𝑇𝑖(𝑒)) = 𝛼𝑖𝛹(𝑒) + 𝑟𝑖(𝑒)           (2.5)  

And derivative of fractal interpolation 

function is, 

 𝑎𝑖𝛹
ˊ(𝑇𝑖(𝑒)) = 𝛼𝑖𝛹

ˊ(𝑒) + 𝑟𝑖
ˊ(𝑒)     (2.6) 

Also, following interpolating properties 

hold 

𝛹(𝑒𝑖)  = 𝑓𝑖                                        (2.7) 
𝛹( 𝑒𝑖+1) = 𝑓𝑖+1                                       (2.8) 

𝛹(1)(𝑒𝑖) = 𝑑𝑖                                          (2.9) 

𝛹(1)(𝑒𝑖+1)𝑑𝑖+1                                       (2.10)  

Where 𝛹(1) represents the first derivative 

with respect to 𝑒 and 𝑑𝑖 denotes the 

derivative value at the knots 𝑒𝑖.  

The interpolator conditions 
(2.7), (2.8), (2.9), (2.10) yields the 

following results. 

𝛹(𝑇𝑖(𝑒1)) = 𝛼𝑖𝛹(𝑒1) +
𝑝𝑖(0)

𝑞𝑖(0)
          (2.11)   

⇒ 𝑈0 = 𝑓𝑖 − 𝛼𝑖𝑓1 

𝛹(𝑇𝑖(𝑒𝑛)) = 𝛼𝑖𝛹(𝑒𝑛) +
𝑝𝑖(1)

𝑞𝑖(1)
      (2.12) 

 ⇒  𝑈3 = 𝑓𝑖+1 − 𝛼𝑖𝑓𝑛, 

𝑎𝑖 = 𝛼𝑖𝛹
ˊ(𝑒1) +

𝑞𝑖(0)𝑝𝑖
ˊ(0)−𝑞𝑖

ˊ(0)𝑝𝑖(0)

(𝑞𝑖(0))
2                             (2.13) ⇒

𝑈1 = (𝑓𝑖 − 𝛼𝑖𝑓1) +
𝑉0(𝜋−2)

𝜋𝑉1
(ℎ𝑖𝑑𝑖 −

𝛼𝑖(𝑒𝑛 − 𝑒1)𝑑1)  

𝑎𝑖 = 𝛼𝑖𝛹
ˊ(𝑒𝑛) +

𝑞𝑖(1)𝑝𝑖
ˊ(1)−𝑞𝑖

ˊ(1)𝑝𝑖(1)

(𝑞𝑖(1))
2                               (2.14)  

⇒ 𝑈2 = (𝑓𝑖+1 − 𝛼𝑖𝑓𝑛) −
𝑉3(𝜋−2)

𝜋𝑉2
(ℎ𝑖𝑑𝑖+1 −

(𝑒𝑛 − 𝑒1))  

Hence, the fractal interpolation function is. 
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𝛹(𝑇𝑖(𝑒)) = 𝛼𝑖𝛹(𝑒) +
𝑝(𝑡)

𝑞(𝑡)
               (2.15) 

Where 

𝑝(𝑡)       =         𝑉0𝑈0(𝑓𝑖 − 𝛼𝑖𝑓1) +

𝑉1𝑈1 ((𝑓𝑖 − 𝛼𝑖𝑓1) +
𝑉0(𝜋−2)

𝜋𝑉1
(ℎ𝑖𝑑𝑖 −

𝛼𝑖(𝑒𝑛 − 𝑒1)𝑑1)) + 𝑉2𝑈2 ((𝑓𝑖+1 − 𝛼𝑖𝑓𝑛) −

𝑉3(𝜋−2)

𝜋𝑉2
(ℎ𝑖𝑑𝑖+1 − 𝛼𝑖(𝑒𝑛 − 𝑒1)𝑑𝑛)) (2.16)  

𝑞(𝑡) = 𝑉0𝑈0 + 𝑉1𝑈1 + 𝑉2𝑈2 + 𝑉3𝑈3 , 

𝑡 =
𝜋

2
(
𝑒−𝑒1

𝑒𝑛−𝑒1
). 

Generating Algorithm for 

Computational Model 1 (Positive Data 

Set) 

The data set, which is positive 
{(𝑒𝑖, 𝑓𝑖) 𝑤𝑖𝑡ℎ 𝑒0 < 𝑒1 < 𝑒2 < ⋯ < 𝑒𝑛} has 

been considered for the problem under 

consideration. The positivity of cubic 

function only depends upon positivity of 

𝑝(𝑡) because 𝑞(𝑡) is always positive for all 

values of parameters.  

Consider, 

𝑝(𝑡) = ∑ 𝑉𝑖𝑈𝑖(𝑡)𝑄𝑖
3
𝑖=0 = 𝑉0𝑈0𝑄0 +

𝑉1𝑈1𝑄1 + 𝑉2𝑈2𝑄2 + 𝑉3𝑈3𝑄3  

𝑝(𝑡) = 𝐴0𝑈0 + 𝐴1𝑈1 + 𝐴2𝑈2 + 𝐴3𝑈3  

Where, 

𝐴0 = 𝑉0𝑄0 = 𝑉0(𝑓𝑖 − 𝛼𝑖𝑓1), 

𝐴1 = 𝑉1𝑄1 = 𝑉1 ((𝑓𝑖 − 𝑠𝑖𝑓1) +

𝑉0(𝜋−2)

𝜋𝑉1
(ℎ𝑖𝑑𝑖 − 𝛼𝑖(𝑒𝑛 − 𝑒1)𝑑1)), 

𝐴2 = 𝑉2𝑄2 = 𝑉2 ((𝑓𝑖+1 − 𝛼𝑖𝑓𝑛) −

𝑉3(𝜋−2)

𝜋𝑉2
(ℎ𝑖𝑑𝑖+1 − (𝑒𝑛 − 𝑒1)𝛼𝑖𝑑𝑛)), 

𝐴3 = 𝑉3𝑄3 = 𝑉3(𝑓𝑖+1 − 𝛼𝑖𝑓𝑛), 

𝑝(𝑡) will be positive if 𝐴0, 𝐴1, 𝐴2, 𝐴3 will be 

positive. Now,  

𝐴0 = 𝑉0(𝑓𝑖 − 𝛼𝑖𝑓1) > 0  

implies            𝛼𝑖 <
𝑓𝑖

𝑓1
 

Also, if 

𝐴1 = 𝑉1 ((𝑓𝑖 − 𝛼𝑖𝑓1) +
𝑉0(𝜋−2)

𝜋𝑉1
(ℎ𝑖𝑑𝑖 −

𝛼𝑖(𝑒𝑛 − 𝑒1)𝑑1)) > 0  

Then 

𝑉1 >
−𝑉0(𝜋−2)

𝜋
(ℎ𝑖𝑑𝑖−𝛼𝑖(𝑒𝑛−𝑒1)𝑑1)

𝑓𝑖−𝛼𝑖𝑓1
  

Likewise, 𝐴2 = 𝑉2 ((𝑓𝑖+1 − 𝛼𝑖𝑓𝑛) −

𝑉3(𝜋−2)

𝜋𝑉2
(ℎ𝑖𝑑𝑖+1 − (𝑒𝑛 − 𝑒1)𝛼𝑖𝑑𝑛)) > 0 

𝑉2 >
𝑉3(𝜋−2)

𝜋
(ℎ𝑖𝑑𝑖+1−(𝑒𝑛−𝑒1)𝛼𝑖𝑑𝑛)

𝑓𝑖+1−𝛼𝑖𝑓𝑛
  

And 𝐴3 = 𝑉3(𝑓𝑖+1 − 𝛼𝑖𝑓𝑛) > 0  

implies 𝛼𝑖 <
𝑓𝑖+1

𝑓𝑛
 and 

0 < 𝛼𝑖 < min {
𝑓𝑖
𝑓1
,
𝑓𝑖+1
𝑓𝑛
} 

The above construction returns the 

following condition on shape parameters.  

The positivity of rational cubic C-Bezier 

curve holds over the interval [𝑎, 𝑏] if it 

fulfils the subsequent sufficient conditions 

in each subinterval 𝐼𝑖 = [𝑒𝑖, 𝑒𝑖+1]. 

𝑉0 > 0 , 𝑉3 > 0 

𝑉1 > max {0,
−𝑉0(𝜋−2)

𝜋
[ℎ𝑖𝑑𝑖−𝛼𝑖(𝑒𝑛−𝑒1)𝑑1]

𝑓𝑖−𝛼𝑖𝑓1
}, 

𝑉2 > 𝑚𝑎𝑥 {0,
𝑉3(𝜋−2)

𝜋
(ℎ𝑖𝑑𝑖+1−(𝑒𝑛−𝑒1)𝛼𝑖𝑑𝑛)

𝑓𝑖+1−𝛼𝑖𝑓𝑛
}  
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and  0 < 𝛼𝑖 < min {
𝑓𝑖

𝑓1
,
𝑓𝑖+1

𝑓𝑛
}. 

Equivalently, shape constraints can be 

reorganized as follows: 

𝑉0 > 0 , 𝑉3 > 0, 

𝑉1 = 𝛾𝑖 max {0,
−𝑉0(𝜋−2)

𝜋
[ℎ𝑖𝑑𝑖−𝛼𝑖(𝑒𝑛−𝑒1)𝑑1]

𝑓𝑖−𝛼𝑖𝑓1
},    

 𝛾𝑖 > 0 

𝑉2 = 𝜎𝑖 +

𝑚𝑎𝑥 {0,
𝑉3(𝜋−2)

𝜋
(ℎ𝑖𝑑𝑖+1−(𝑒𝑛−𝑒1)𝛼𝑖𝑑𝑛)

𝑓𝑖+1−𝛼𝑖𝑓𝑛
},   

𝜎𝑖 > 0 

 0 < 𝛼𝑖 < min {
𝑓𝑖
𝑓1
,
𝑓𝑖+1
𝑓𝑛
} 

For preserving the shape of the curve, the 

parameters 𝑉1𝑎𝑛𝑑 𝑉2 to be used. While to 

adjust and amend the shape of the curves, 

parameters 𝑉0, 𝑉3 𝑎𝑛𝑑 𝛼𝑖 will be used. 

Generating Algorithm for 

Computational Model 2 (Monotone Data 

Set) 

Consider the data set points 
{(𝑒0, 𝑓0), (𝑒1, 𝑓1), (𝑒2, 𝑓2),… , (𝑒𝑛, 𝑓𝑛)} 
where 𝑒0 < 𝑒1 < 𝑒2 < ⋯ < 𝑒𝑛 and 𝑓𝑖 > 0  

also        𝑓𝑖 < 𝑓𝑖+1, ∆𝑖> 0, 𝑑𝑖 > 0  

Since, 

  𝑎𝑖𝛹
ˊ(𝑇𝑖(𝑒)) = 𝛼𝑖𝛹

ˊ(𝑒) + 𝑟𝑖
ˊ(𝑒)     (4.1)  

where, 

(𝑒) =
𝑝(1)(𝑡)𝑞(𝑡)−𝑝(𝑡)𝑞(1)(𝑡)

(𝑞(𝑡))2
                    (4.2)  

The given function is monotonicity 

increasing if 𝛹ˊ(𝑇𝑖(𝑒)) > 0, for this we 

will show that  𝑟𝑖
ˊ(𝑒) > 0. 

Where, 

𝑝(𝑡) =∑𝑉𝑖𝑈𝑖(𝑡)𝑄𝑖

3

𝑖=0

 , 

 𝑞(𝑡) =∑𝑉𝑖𝑈𝑖

3

𝑖=0

(𝑡),  

𝑝(1)(𝑡) =∑𝑉𝑖𝑈𝑖
(1)(𝑡)𝐴𝑖

3

𝑖=0

, 

𝑞(1)(𝑡) =∑𝑉𝑖𝑈𝑖
(1)

3

𝑖=0

(𝑡) 

And  

𝑈0
(1)(𝑡) =

2

(𝜋−2)
(sin 𝑡 − 1), 

𝑈1
(1)(𝑡) =

2

(𝜋−2)(4−𝜋)
((2 − 𝜋) cos 𝑡 −

2 sin 𝑡 + 2), 

𝑈2
(1)(𝑡) =

2(2 cos 𝑡−(2−𝜋)sin 𝑡−2)

(𝜋−2)(4−𝜋)
, 

𝑈3
(1)(𝑡) =

2

(𝜋−2)
(− cos 𝑡 + 1), 

Replacing these values in (4.2) and 

simplifying, the following equation is 

obtained. 

𝑠(1)(𝑒) =

(
𝜋

2ℎ𝑖
)
(

 
 
 
 
 

𝑉0𝑉1(𝑄1−𝑄0)(𝑈0𝑈1
ˊ−𝑈0

ˊ𝑈1)+

𝑉0𝑉2(𝑄2−𝑄0)(𝑈0𝑈2
ˊ−𝑈0

ˊ𝑈2)+

𝑉0𝑉3(𝑄3−𝑄0)(𝑈0𝑈3
ˊ−𝑈3𝑈0

ˊ )+

𝑉1𝑉2(𝑄2−𝑄1)(𝑈1𝑈2
ˊ−𝑈2𝑈1

ˊ )+

𝑉1𝑉3(𝑄3−𝑄1)(𝑈1𝑈3
ˊ−𝑈1

ˊ𝑈3)+

𝑉2𝑉3(𝑄3−𝑄2)(𝑈2𝑈3
ˊ−𝑈3𝑈2

ˊ ) )

 
 
 
 
 

(𝑉0𝑈0+𝑉1𝑈1+𝑉2𝑈2+𝑉3𝑈3)2
=

(

 
 
𝐷0(𝑈0𝑈1

(1)
−𝑈0

(1)
𝑈1)+𝐷1(𝑈0𝑈2

(1)
−𝑈0

(1)
𝑈2)+

𝐷2(𝑈0𝑈3
(1)
−𝑈0

(1)
𝑈3)+𝐷3(𝑈1𝑈2

(1)
−𝑈2𝑈1

(1)
)+

𝐷4(𝑈3
(1)
𝑈1−𝑈3𝑈1

(1)
)+𝐷5(𝑈2𝑈3

(1)
−𝑈2

(1)
𝑈3) )

 
 

(𝑉0𝑈0+𝑉1𝑈1+𝑉2𝑈2+𝑉3𝑈3)2
 

Where, 

𝐷0 =
𝜋

2ℎ𝑖
𝑉0𝑉1(𝑄1 − 𝑄0), 

𝐷1 =
𝜋

2ℎ𝑖
𝑉0𝑉2(𝑄2 − 𝑄0), 
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𝐷2 =
𝜋

2ℎ𝑖
𝑉0𝑉3(𝑄3 − 𝑄0) 

𝐷3 =
𝜋

2ℎ𝑖
𝑉1𝑉2(𝑄2 − 𝑄1), 

𝐷4 =
𝜋

2ℎ𝑖
𝑉1𝑉3(𝑄3 − 𝑄1), 

𝐷5 =
𝜋

2ℎ𝑖
𝑉2𝑉3(𝑄3 − 𝑄2) 

Putting the values of 𝑄𝑖
ʹ𝑠 in 𝐷𝑖

ʹ𝑠 we get, 

𝐷0 = 𝑉0
2 (

𝜋−2

2
) (𝑑𝑖 −

𝛼𝑖(𝑒𝑛−𝑒1)𝑑1

ℎ𝑖
), 

𝐷1 =
𝜋

2ℎ𝑖
𝑉0𝑉2((𝑓𝑖+1 − 𝑓𝑖) − 𝛼𝑖(𝑓𝑛 −

𝑓1)) − 𝑉0𝑉3 (
𝜋−2

2
) (𝑑𝑖+1 −

(𝑒𝑛−𝑒1)𝛼𝑖𝑑𝑛

ℎ𝑖
), 

𝐷2 =
𝜋

2ℎ𝑖
𝑉0𝑉3((𝑓𝑖+1 − 𝑓𝑖) − 𝛼𝑖(𝑓𝑛 − 𝑓1)), 

𝐷3 =
𝜋

2ℎ𝑖
𝑉1𝑉2((𝑓𝑖+1 − 𝑓𝑖) − 𝛼𝑖(𝑓𝑛 −

𝑓1)) − 𝑉1𝑉3 (
𝜋−2

2
) (𝑑𝑖+1 −

(𝑒𝑛−𝑒1)𝛼𝑖𝑑𝑛

ℎ𝑖
) −

𝑉0𝑉2 (
𝜋−2

2
) (𝑑𝑖 −

𝛼𝑖(𝑒𝑛−𝑒1)𝑑1

ℎ𝑖
), 

𝐷4 =
𝜋

2ℎ𝑖
𝑉1𝑉3((𝑓𝑖+1 − 𝑓𝑖) − 𝛼𝑖(𝑓𝑛 −

𝑓1)) − 𝑉0𝑉3 (
𝜋−2

2
) (𝑑𝑖 −

𝛼𝑖(𝑒𝑛−𝑒1)𝑑1

ℎ𝑖
), 

𝐷5 =
𝜋

2ℎ𝑖
𝑉3
2(𝜋 − 2)(ℎ𝑖𝑑𝑖+1 − (𝑒𝑛 −

𝑒1)𝛼𝑖𝑑𝑛, 

Let 

𝑎𝑖 =
𝑒𝑖+1−𝑒𝑖

𝑒𝑛−𝑒1
=

ℎ𝑖

𝑒𝑛−𝑒1
  , and 

∆𝑖=
𝑓𝑖+1−𝑓𝑖

ℎ𝑖
, ∆𝑖

∗= ∆𝑖 − 𝛼𝑖 (
𝑓𝑛−𝑓1

ℎ𝑖
)  , 

𝑑𝑖+1
∗ = 𝑑𝑖+1 − 𝛼𝑖

𝑑𝑛

𝑎𝑖
  , 

𝑑𝑖
∗ = 𝑑𝑖 − 𝛼𝑖

𝑑1
𝑎𝑖

 

Now,𝐷0 > 0, 

implies,  

𝛼𝑖 <
ℎ𝑖𝑑𝑖

(𝑒𝑛 − 𝑒)𝑑1
⇒ 𝛼𝑖 < 𝑎𝑖

𝑑𝑖
𝑑1

 

Similarly, 

𝐷1 > 0 ⇒ 𝑉2 > (
𝜋−2

𝜋
) 𝑉3

𝑑𝑖+1
∗

∆𝑖
∗ , 

𝐷2 > 0,⇒ 𝛼𝑖 <
(𝑓𝑖+1−𝑓𝑖)

(𝑓𝑛−𝑓1)
, 

𝐷3 > 0,⇒ 𝑉2 > 𝑉3 (
𝜋−2

𝜋
)
𝑑𝑖+1
∗

∆𝑖
∗  

𝐷4 > 0,⇒ 𝑉1 > 𝑉0 (
𝜋−2

𝜋
)
𝑑𝑖
∗

∆𝑖
∗, 

And 

𝐷5 > 0,⇒ 𝛼𝑖 < 𝑎𝑖
𝑑𝑖+1

𝑑𝑛
 

So that 𝛹 will preserve monotonicity on the 

interval  𝐼𝑖 = [𝑒𝑖, 𝑒𝑖+1]  

if the following constrained is true. 

0 < 𝛼𝑖 < {𝑎𝑖
𝑑𝑖
𝑑1
, 𝑎𝑖
𝑑𝑖+1
𝑑𝑛

,
(𝑓𝑖+1 − 𝑓𝑖)

(𝑓𝑛 − 𝑓1)
}, 

Equivalently,  

𝑉0 > 0 , 𝑉3 > 0 

𝑉1 > max {0, 𝑉0 (
𝜋−2

𝜋
)
𝑑𝑖
∗

∆𝑖
∗}, 

𝑉2 > max {0, 𝑉3 (
𝜋 − 2

𝜋
)
𝑑𝑖+1
∗

∆𝑖
∗ } 

Where, 

∆𝑖
∗= ∆𝑖 − 𝛼𝑖 (

𝑓𝑛 − 𝑓1
ℎ𝑖

),      

𝑑𝑖+1
∗ = 𝑑𝑖+1 − 𝛼𝑖

𝑑𝑛
𝑎𝑖
,   

𝑑𝑖
∗ = 𝑑𝑖 − 𝛼𝑖

𝑑1
𝑎𝑖

 

And   
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0 < 𝛼𝑖 < min {
𝑎𝑖𝑑𝑖
𝑑1

,
𝑎𝑖𝑑𝑖+1
𝑑𝑛

,
𝑓𝑖+1 − 𝑓𝑖
𝑓𝑛 − 𝑓1

} 

These can be rearranged as   

𝑉0 > 0 , 𝑉3 > 0 

𝑉1 = 𝛾𝑖 +max {0, 𝑉0 (
𝜋−2

𝜋
)
𝑑𝑖
∗

∆𝑖
∗}, 

𝑉2 = 𝜎𝑖 +max {0, 𝑉3 (
𝜋 − 2

𝜋
)
𝑑𝑖+1
∗

∆𝑖
∗ } 

Where,  

∆𝑖
∗= ∆𝑖 − 𝛼𝑖 (

𝑓𝑛 − 𝑓1
ℎ𝑖

), 

𝑑𝑖+1
∗ = 𝑑𝑖+1 − 𝛼𝑖

𝑑𝑛
𝑎𝑖
,    𝑑𝑖

∗ = 𝑑𝑖 − 𝛼𝑖
𝑑1
𝑎𝑖

 

 𝑎𝑖 =
𝑒𝑖+1 − 𝑒𝑖
𝑒𝑛 − 𝑒1

=
ℎ𝑖

𝑒𝑛 − 𝑒1
, 

∆𝑖=
𝑓𝑖+1 − 𝑓𝑖
ℎ𝑖

 

And  

0 < 𝛼𝑖 < min {
𝑎𝑖𝑑𝑖
𝑑1

,
𝑎𝑖𝑑𝑖+1
𝑑𝑛

,
𝑓𝑖+1 − 𝑓𝑖
𝑓𝑛 − 𝑓1

} 

For preserving the shape of the curve these 

parameters 𝑉1𝑎𝑛𝑑 𝑉2 are to be used. To 

adjust and alter the shape of the curves, 

parameters 𝑉0, 𝑉3 𝑎𝑛𝑑 𝛼𝑖 are used. 

Validation of Proposed Algorithm 

The proposed algorithm for predicting data 

values has been tested and trained on two 

types of data sets in this section.  

Simulation of Model 1 

The data set of type positive is presented in 

Table 1 and Table 2. This data has been 

tested against some randomly chosen 

values of shape parameter and scaling 

factors which are tabulated in Table 3 and 

Table 4 respectively. 

The type of positive data can be seen easily 

in data set 1 and 2, yet the curves in Figure 

5.1 and Figure 5.5 show the opposite 

negative behavior. So, the prediction 

pattern misguides the observer. To 

overcome this type of crucial problem, the 

proposed technique constructed in Section 

3, then, has been applied to test and train the 

same data sets. Figures 5.2, 5.3, 5.4, 5.6, 5.7 

and 5.8 predict the real scenario hidden in 

the data. 

Table 1: Data Set 1 

𝑖 0 1 2 3 4 5 6 7 8 

𝑒𝑖 0.

0

5 

0.

3 

0.

5

5 

1.

0

5 

1.

5

5 

2.

0

5 

2.

5

5 

3.

0

5 

4.

0

5 

𝑓𝑖 2.

0

5 

0.

6

5 

0.

1

5 

0.

1

8 

1.

0

5 

0.

5

5 

1.

5

5 

0.

3 

0.

2

5 

Table 2: Data Set 2 

𝑖 0 1 2 3 4 5 6 

𝑒𝑖 2 3 7 8 9 13 14 

𝑓𝑖 10 2 3 7 2 3 10 

Table 3: Random Values of Parameters and 

Scaling Factors for Data Set 1 

𝛼𝑖 𝑉0(𝑖) 𝑉1(𝑖) 𝑉2(𝑖) 𝑉3(𝑖) 
0.2 0.002 25 12 0.1 

Table 4: Random Values of Parameters and 

Scaling Factors for Data Set 2 

𝛼𝑖 𝑉0(𝑖) 𝑉1(𝑖) 𝑉2(𝑖) 𝑉3(𝑖) 

0.4 0.3 2.5 1.5 0.1 

The Figures (5.2, 5.3, 5.4, 5.6, 5.7 and 5.8) 

further exemplify how the proposed method 

allows for the freedom to obtain various 

results even while considering the nature of 

the data. 
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Figure 5.1. 2D plot of data set 

 
Figure 5.2. Proposed supervised computing 

algorithm for data set 1 with 𝑉0 =
0.002, 𝑉3 = 0. 

 
Figure 5.3. Proposed supervised computing 

algorithm with  𝑉0 = 0.2,  𝑉3 = 0.1 

 
Figure 5.4. Proposed supervised computing 

algorithm with  𝑉0 = 0.4,  𝑉3 = 0.3 

 
Figure 5.5. 2D plot of data set 2. 

 
Figure 5.6. Proposed supervised computing 

algorithm for data set 2 with 𝑉0 = 0.003, 

 𝑉3 = 0.3 
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Figure 5.7. Proposed supervised computing 

algorithm for data set 2 with 𝑉0 = 0.002, 

 𝑉3 = 0.001 

 
Figure 5.8. Proposed supervised computing 

algorithm for data set 2 with 𝑉0 = 0.9, 

 𝑉3 = 0.9 

Simulation of Model 2 

The monotone type data set is considered in 

Table 5 and Table 6. This data has been 

tested against some randomly chosen 

values of shape parameter and scaling 

factors which are tabulated in Table 7 and 

Table 8 respectively. 

Table 5: Data Set 3 
𝑖 0 1 2 3 

𝑒𝑖 0 0.5 2.2 3.3 

𝑓𝑖 124 331 379 835 

Table 6: Data Set 4 
𝑖 0 1 2 3 4 5 6 7 8 9 1

0 

𝑒𝑖 0

.

1 

4 6

.

5 

1

0 

1

5 

2

5 

4

0 

5

0 

62 6

5 

6

6 

𝑓𝑖 1 1 2 3

.

5 

5

.

5 

5

.

5 

1

0 

1

0 

12

.5 

1

8 

2

0 

Table 7: Random Values of Parameters and 

Scaling Factors for Data Set 3 

𝑠𝑖 𝑉0(𝑖) 𝑉1(𝑖) 𝑉2(𝑖) 𝑉3(𝑖) 

0.7 0.002 15 1.2 0.2 

Table 8: Random Values of Parameters and 

Scaling Factors for Data Set 4 

𝑠𝑖 𝑉0(𝑖) 𝑉1(𝑖) 𝑉2(𝑖) 𝑉3(𝑖) 

0.5 3 5 15 1 

The type of monotone data can be seen 

easily in data set 5 and 6, however, the 

curves in Figure 5.9 and Figure 5.13 show 

the false pattern. To resolve the intrinsic 

pattern prediction issue, the proposed 

technique constructed in Section 4, then, 

has been applied to test and train the same 

data sets. Figures 5.10, 5.11, 5.12, 5.14, 

5.15 and 5.16 overcome this misleading 

trend and real scenario hidden in the data 

can clearly be witnessed. Moreover, the 

Figures (5.10, 5.11, 5.12, 5.14, 5.15 and 

(5.16) depict how the proposed method 

provides freedom to obtain various results 

even while considering the nature of the 

data.  

 
Figure 5.9. 2D plot of data set 3. 
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Figure 5.10.  Proposed Supervised 

Computing Algorithm for Data Set 3 

with 𝑉0 = 0.001,  𝑉3 = 0.1 

 
Figure 5.11. Proposed supervised 

computing algorithm for data set 3 

with 𝑉0 = 0.3,  𝑉3 = 0.3 

 
Figure 5.12. Proposed Supervised 

Computing Algorithm for Data Set 3 

with 𝑉0 = 11,  𝑉3 = 0.003 

Figure 5.13. 2D plot of Data Set 4 

Figure 5.14. Proposed Supervised 

Computing Algorithm for Data Set 4 with 

𝑉0=0.5, 𝑉3=0.4 

Figure 5.15.  Proposed Supervised 

Computing Algorithm for Data Set 4 

with 𝑉0 = 0.004,  𝑉3 = 0.001 
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Figure 5.16.  Proposed Supervised 

Computing Algorithm for Data Set 4 

with 𝑉0 = 0.001, 𝑉3 = 21 

Conclusion 

In this research, a supervised, hybrid 

computing algorithm based on rational C 

cubic Bezier and fractal function has been 

proposed to solve the problem of predicting 

intrinsic data attributes.  The proposed 

algorithm introduces four shape parameters 

and a scale parameter to provide a variety 

of simulated results. It has been tested and 

trained in two scenarios, Scenario 1 –Type 

positive data set and Scenario 2 –Type 

monotone data set. Four different data sets, 

(two for each of the scenarios) have been 

trained and tested to validate the 

authenticity of the developed algorithm. 

Simulation results for shape control and 

scale parameter  𝑉0, 𝑉3 and 𝛼𝑖 against each 

data set have been demonstrated which 

depict fruitful implementation to have 

insight of intrinsic data attributes. The 

suggested algorithm also handles 

irregularities of data successfully by 

adjusting values of scale parameter. 

The proposed model is a supervised 

learning model in which two main attributes 

are supplied to generate simulating effect. 

the first one plays a crucial role in 

determining the vertical magnification or 

compression of the pattern being generated. 

This factor essentially controls the 

amplitude of the pattern along the vertical 

axis. 

Mainly, controlling the gives you greater 

control over the visual appearance of the 

generated underlying pattern. Depending 

on the specific requirements or aesthetic 

preferences, you can adjust the factor to 

produce visually pleasing patterns with the 

desired characteristics, such as smoothness, 

roughness, or intricacy. The ability to adjust 

it allows you to adapt the generated pattern 

to better represent specific characteristics, 

ensuring more accurate and meaningful 

visualizations or analyses. 

The second important attribute of the prop- 

-posed method is their random weights that 

are exogenous factors. This enables 

functions to adapt to the variability and 

complexity of the underlying data while 

minimizing deviations. By optimizing the 

weights, the curve can capture both global 

trends and local variations in the data, 

resulting in a more accurate representation. 

Random weight can be subject to 

regularization techniques or constraints to 

impose specific properties on the curve, 

such as monotonicity, convexity, or 

boundedness. This allows for the creation 

of customized patterns that adhere to 

desired criteria of the underlying data. 
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GP:   Gaussian Processor  
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